COCHIN PERIODONTISTS SOCIETY (COPS)
Born in an informal meeting of 11 Periodontists of IDA Cochin branch on 3rd August 2004 COPS has today grown to one of the best regional professional societies in the field of dentistry in the state of Kerala. Over this period, COPS has served as a platform for more than 60 Professional Enrichment Programs including several state level conferences. COPS played an integral role in hosting the national conference of Indian Society of Periodontology in the year 2013. Having majority of its members as active academicians serving across the state, it was a dream of the society to have a scientific journal of its own, which is realized through Jcops, the official publication of Cochin Periodontists Society.

Journal of Cochin Periodontists Society (Jcops) is the official publication of Cochin Periodontists Society. It is a semi-annual peer-reviewed national journal publishing high quality articles in the field of Dentistry. The journal’s full text is available online at jcops.copsonweb.org. The journal allows free access to its contents and permits authors to self-archive final accepted version of the articles.

Scope of the journal: Journal of Cochin Periodontists Society is completely devoted to advancing the knowledge and practice in the subject of Periodontology and interrelated specialties in the field of dental and medical sciences. Its goal is to publish the latest information in the field of contemporary dentistry. The Journal publishes original contributions of high scientific merit in every aspect of dentistry and related sciences, with special affinity to the subject of Periodontology under the broad categories of reviews, original researches, case reports, case series with discussions, short communications & basic science short research reports.
1. Root dentine hypersensitivity following hand Vs ultrasonic instrumentation: A randomized clinical trial
M. Maria Subash Aaron, J. Sri Hari, Koshy Chithresan, Arun Maradi, M. Praveen Krishna

Mohammed Sagir, Nasaradheen C, Thaju Raj P.K, Biju P Babu, Hisham Hameed, Kennet Chirayath

3. Indirect sinus lift – an approach for placement of implants in deficient maxillary ridges: A case report
Angel Fenol, Ashitha Mohandas, Jayachandran, Susan Jebi

Bittu Saira Koshy, Jaideep Mahendra, R. Vijayalakshmi

5. Surgical management of a periimplant abscess: A case report
Sruthy Purushothaman, Elizabeth Kuruvilla, Biniraj K R, Rishi Emmatty, Tony P Paul, Aslam A R.

6. Peripheral Cementifying Fibroma: A Case Report
Milly Trivedi, Shalini Gupta, Vasumati Patel, Hiral Purani, Krishnan Sarayi, Ajesh Fadu

7. Oral soft tissue chondroma: A case report with discussion
Mridula Mohan, Rakesh Survesh, Mahija Janardhanan, Vindhya Savithri, Thara Aravind

8. Single Rooted Permanent Maxillary Molars with Vertucci’s Type I canal configuration: 3 Rare Case Reports
Krishna Prasada Lashkari, Rajana Raghunath

9. Langerhans cell histiocytosis in a 7 month old baby: A case report

10. Guided Bone Regeneration in Apicoectomy surgeries: Case series with discussion

11. 3D-printed scaffold – future of periodontal tissue engineering
Nikhil Das C, Deepa AG, Elizabeth Koshi, Arun Sadasivan

12. A brief insight on salivaomics
Deepthy M, Nandakumar K, Padmakumar T P, Raja Kurien Ninan, Devsree Naveen, Teenu Abraham

13. Correlation of implant protective occlusion with implant failures
Ranjith Kumar P, Rohit Raghavan, Jishnu S

14. Advances in dental local anesthesia techniques and devices
Krishna V. Vijay, Maya George
BASIC RESEARCH

22. Comparative evaluation of the effect of diode LASER and arginine containing desensitizing agent: An in vitro SEM pilot study
Arun Narayanan, Ajay Bhat, Shabeer Ali K

23. Analysis of mineral contents of dental calculus & assessment of its similarity with saliva

Contents Contd.....

15. Biologic width – the Prosthodontic perspective
Shajahan P A, Rohit Raghavan, Monisha V S

16. Intricacies in Osseoperception : A changing scenario from proprioception

17. Infection control practices in dentistry
Pallavi Menon, Jayachandran P

18. Role of occlusion in restorative dentistry
Pranitha Prabhakaran, Annapoorna BM

Sajith Abraham, Sheethal Joy, Subair K, Jeena Sebastian, Melwin Mathew

20. Alveolar ridge augmentation in implant dentistry- Rebuilding a strong foundation
Saurabh Kishore P G, Nandakumar K, Padmakumar P P, Raju Kurien Ninan, Devisree Naveen, Teenu Abraham

21. Newer periodontal pathogens and their potential role in Periodontitis
Bhayaa B, Ashwini S, Vinceta Shaji

How to cite this article: Log on to jcops.copsonweb.org. Biniraj K R. Today’s article - Tomorrow’s reference!!. Journal of Cochin Periodontists Society 2016;1:103

There is only a relative demarcation between past, present and future. Unless found worthy, no information gathered in past is carried to future. Authentic literature in medical science was a feeble database till recently, with few standard text books and journals monopolizing the review of literature world. Having a direct access to numerous search engines & online libraries, today anyone can publish their interests, whether it is aimed at learning, training or guidance. Having free access in publishing any information for everyone may be a serious threat to medical literature, which may lose its credibility. Here is where the genuine readers rely on peer reviewed and indexed journals that have an online access also. Articles published in such journals definitely reach a larger crowd across the world that recognizes the work as well as the effort of authors behind it. A better reason for having an article published in such journals would be to ensure such works become a reference for someone who would continue the kind of work you did or follow up your work. Wish each of the articles published in this journal become a reference for someone tomorrow!

Access this article online
Website : jcops.copsonweb.org

Biniraj K R
(Editor in Chief - Jcops)
Professor & HOD - Department of Clinical Periodontology & Oral Implantology
Royal Dental College,
Palakkad, Kerala, India
E-mail: binirajkr@gmail.com

Warm wishes to all readers of Jcops

Today's article - Tomorrow's reference!!!
Root dentine hypersensitivity following hand Vs ultrasonic instrumentation: A randomized clinical trial

M. Maria Subash Aaron, J. Sri Hari, Koshy Chithresan, Arun Maradi, M. Praveen Krishna

ABSTRACT:
Background: The study aimed at comparing the degree of root dentine hypersensitivity following Scaling and Root planing using Hand vs Ultrasonic instruments.

Materials and Methods: 15 out-patients with mild to moderate chronic periodontitis were included in this clinical trial. After probing depth evaluation, two quadrants were randomly allotted for either hand or ultrasonic instrumentation. Root dentine hypersensitivity was recorded using an air-blast derived from a 3 way syringe.

Baseline Visual Analogue Scale (VAS) and plaque scores were recorded. One quadrant was instrumented with Gracey curettes and other with ultrasonic scalers. Patients were recalled after 1st, 2nd and 3rd week. At every visit VAS and plaque scores were recorded.

Results: No statistically significant difference in mean total VAS scores between teeth instrumented with ultrasonic and hand instruments after scaling and root planing were recorded. The quadrants were randomly allotted for either hand or ultrasonic instrumentation. Root dentine hypersensitivity was recorded using an air-blast derived from a 3 way syringe. Baseline Visual Analogue Scale (VAS) and plaque scores were recorded. One quadrant was instrumented with Gracey curettes and other with ultrasonic scalers.

Conclusion: No statistically significant difference in mean total VAS scores between teeth instrumented with ultrasonic and hand instruments after scaling and root planing was noticed.

Key words: Root dentine hypersensitivity, ultrasonic instruments, Gracey curettes.

INTRODUCTION:
Chronic Periodontitis is an inflammatory disease of periodontium characterised by inflammation of the gingiva and adjacent attachment apparatus, illustrated by loss of clinical attachment due to destruction of periodontal ligament and loss of alveolar bone.[1,2] Periodontitis is a bacterial plaque induced multifactorial disease. The successful treatment of periodontitis depends on the effective removal of bacterial deposits from the tooth surfaces.[3,4] This can be accomplished through oral hygiene measures by the patient[5] and by professionally performed mechanical debridement every six months.[6]

Professionally performed mechanical debridement is done commonly with hand instruments or with ultrasonic instruments. Clinical findings indicate that similar treatment outcomes were obtained with hand and sonic or ultrasonic instruments.[7,8] The intragum exposure of root dentine due to removal of the cementum layer is one of the complications due to scaling and root planing which leads to exposure of dentinal tubules.[9]

As a result, the patient may experience increased sensitivity of the exposed root surfaces to thermal, tactile, evaporative and osmotic stimuli. This pain condition, when severe, has been termed in the literature as dentine hypersensitivity (DH), which is a well-known ailment to the clinician.[10]

Although, studies had been done to evaluate root dentine hypersensitivity following non surgical therapy and studies comparing root dentine hypersensitivity following non surgical therapy[11,12] and surgical therapy[13,14] had been done, very few studies compared the root dentine hypersensitivity following ultrasonic and hand instruments.

In this randomized clinical trial, we had compared the degree of root dentine hypersensitivity developed following scaling and root planing using hand instruments vs ultrasonic instruments.

MATERIALS AND METHODS:
This randomized clinical trial was approved by Institutional ethical committee review board of Sri Ramakrishna Dental College and Hospital, Coimbatore on August 2015. The study was conducted during September 2015 to January 2016. 15 patients with mild to moderate chronic periodontitis from out-patients who had visited Department of Periodontology, Sri Ramakrishna Dental College and Hospital, Coimbatore, were included in this clinical trial. Inclusion criteria for participation were the need for periodontal treatment in at least 2 quadrants comprising a minimum of 4 teeth with vital pulps, but no open cavities. Patients with history of dental treatment in the last 3 months and patients with ongoing treatment for root dentine hypersensitivity were excluded from the study.

Crowded teeth and the teeth used as abutment for removable prostheses were excluded. Informed consent was obtained from the patients participated in the study. Plaque scores were obtained in all quadrants before scaling and root planing. Recording of clinical parameters and, scaling and root planing were performed by single operator. After evaluating the probing depth, two quadrants with mild to moderate periodontitis were selected for instrumentation. Root dentine hypersensitivity was recorded using an air-blast (60 psi) derived from a dental syringe which was directed perpendicular to the root surface for one second. During testing the dentist’s gloved fingers shielded the neighbouring teeth. After this stimulation the patient was asked again to score the discomfort. The perceived discomfort for each tooth was graded for each of the two stimuli by using a 100 mm VAS, labelled at the two extremes with “no pain” at the zero extreme and with “unbearable pain” at the 100 mm extreme. Baseline Visual Analogue Scale (VAS) scores[15] and plaque scores[16] were recorded. The quadrants were randomly allotted for either hand or ultrasonic instrumentation by tossing a coin. One quadrant was instrumented with Gracey curettes and other quadrant with ultrasonic scalers (EMS piezoelectric Scaler) under local anaesthesia. Patients were instructed to follow Modified Bass brushing technique and interdental cleaning aids were also prescribed when needed. Patients were recalled after 1st week, 2nd week and 3rd week. At every visit VAS scores and plaque scores were recorded. All the patients were prescribed with Chlorhexidine mouthwash 0.2% after scaling and root planing. None of them were prescribed with analgesics.

STATISTICAL ANALYSIS:
Sample size was determined as 30 by using the formula n = t² X P(1-p) / m², where n is the required sample size, t is the confidence interval and it was set as 95%, p is the expected frequency of factor under study and it was set as 25%, m is the margin of error and it was set as 5%. The data were reported as the mean ± SD or the median, depending on their distribution. The differences in quantitative variables between groups were assessed by means of the unpaired t test. Comparison between groups was made by the Non parametric Mann - Whitney test. ANOVA was used to assess the quantitative variable. Scheffe Post hoc test was performed. A p value of < 0.05 using a two-tailed test was taken as being of significance for all statistical tests. All data were analysed with a statistical software package. (SPSS, version 16.0 for windows)

RESULTS:
There was a statistically significant reduction in mean total plaque scores from baseline (4.72) to 3rd week (3.07) in all the patients (Figure 1, 2 and Table 1). The mean total visual analogue score was high in teeth instrumented with hand instruments when compared to ultrasonic instruments in all visits but not statistically significant (p = 0.05) (Table 2). The mean total Visual Analogue Score peaks from baseline to 2nd week and gradually falls by 3rd week in both the groups (Figure 3). Correlation between total mean plaque score and total mean visual analogue score was also analysed (Table 3). Positive correlations present between total mean plaque score and total mean visual analogue score during baseline and during 3rd visit. Negative correlation present between total mean plaque score
and total mean analogue score during 1st and 2nd visit.

DISCUSSION:
The present study had been conducted to compare the degree of root dentine hypersensitivity developed following scaling and root planing using hand instruments vs ultrasonic instruments. Significant reduction in mean total plaque scores from baseline (4.72) to 3rd week (3.07) was observed in all the patients. The results of the present clinical trial demonstrated that the intensity of root dentine sensitivity (RDS) decreased from baseline to 3rd week in both groups when no repeated root instrumentation had been performed and meticulous plaque control was maintained.

In our study, mean total VAS score peaks from 1st week to 2nd week and declined gradually by 3rd week. This is in accordance with Tammaro et al. who demonstrated decrease in VAS score after two weeks follow up. But this is contradictory to Fischer et al. who reported that the pain threshold level decreased within one week following subgingival instrumentation. On the other hand, Wallace & Bissada observed no significant change in root sensitivity after scaling and root planing.

In our present study there was a positive correlation between mean total plaque scores and mean total visual analogue score in all patients during baseline and 3rd week and negative correlation during 1st and 2nd week. This shows that even when meticulous plaque control was done by all patients root dentine hypersensitivity was always a side effect of scaling and root planing temporarily. No analgesics were given to the patients in this study to evaluate the effect of plaque control alone on root dentine sensitivity. The design of the present study was such that it allowed for sequential, repeated assessments of root dentine hypersensitivity in the treated quadrants. During the 1st, 2nd and 3rd week follow-up after scaling and root planing, no statistically significant difference in the mean VAS scores were observed between hand instrumentation and ultrasonic instrumentation (p>0.05).

CONCLUSION:
No statistically significant difference in VAS scores had been reported between ultrasonic and hand instrumented groups following scaling and root planing in all follow-up visits. Further studies with more number of participants and extended follow up is necessary to substantiate the findings of the study.

TABLE 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Scores</th>
<th>SD</th>
<th>95% CI for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>4.72</td>
<td>1.63</td>
<td>3.82 - 5.62</td>
<td>2.03</td>
<td>7.46</td>
</tr>
<tr>
<td>1ST WEEK</td>
<td>3.14</td>
<td>0.89</td>
<td>2.65 - 3.64</td>
<td>1.89</td>
<td>4.34</td>
</tr>
<tr>
<td>2ND WEEK</td>
<td>3.15</td>
<td>0.83</td>
<td>2.69 - 3.61</td>
<td>1.8</td>
<td>4.95</td>
</tr>
<tr>
<td>3RD WEEK</td>
<td>3.07</td>
<td>1.09</td>
<td>2.47 - 3.68</td>
<td>1.48</td>
<td>5.76</td>
</tr>
<tr>
<td>Total</td>
<td>3.52</td>
<td>1.32</td>
<td>3.18 - 3.86</td>
<td>1.48</td>
<td>7.46</td>
</tr>
</tbody>
</table>

Figure 1: Mean total plaque scores of Study Groups

Figure 2: Mean total plaque scores at baseline and all follow-ups

Figure 3: Mean of Total Visual Analogue scores of Hand Instrument and Ultrasound Instrument at different follow-ups

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Scores</th>
<th>SD</th>
<th>95% CI for Mean</th>
<th>Lower</th>
<th>Upper</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Sg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>1.7</td>
<td>3.1</td>
<td>0.0 - 3.4</td>
<td>1.7</td>
<td>3.1</td>
<td>0.0</td>
<td>3.4</td>
<td>10</td>
</tr>
<tr>
<td>US</td>
<td>1.0</td>
<td>2.8</td>
<td>-0.6 - 2.6</td>
<td>1.0</td>
<td>2.8</td>
<td>-0.6</td>
<td>2.6</td>
<td>10 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>1.3</td>
<td>2.9</td>
<td>0.2 - 2.4</td>
<td>1.3</td>
<td>2.9</td>
<td>0.2</td>
<td>2.4</td>
<td>10</td>
</tr>
<tr>
<td>BASELINE</td>
<td>4.7</td>
<td>6.4</td>
<td>1.1 - 8.2</td>
<td>4.7</td>
<td>6.4</td>
<td>1.1</td>
<td>8.2</td>
<td>20 >0.05</td>
</tr>
<tr>
<td>US</td>
<td>3.7</td>
<td>4.8</td>
<td>1.0 - 6.3</td>
<td>3.7</td>
<td>4.8</td>
<td>1.0</td>
<td>6.3</td>
<td>15 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>4.2</td>
<td>5.6</td>
<td>2.1 - 6.3</td>
<td>4.2</td>
<td>5.6</td>
<td>2.1</td>
<td>6.3</td>
<td>20</td>
</tr>
<tr>
<td>BASELINE</td>
<td>8.0</td>
<td>8.2</td>
<td>3.5 - 12.5</td>
<td>8.0</td>
<td>8.2</td>
<td>3.5</td>
<td>12.5</td>
<td>20 >0.05</td>
</tr>
<tr>
<td>US</td>
<td>6.0</td>
<td>4.7</td>
<td>3.4 - 8.6</td>
<td>6.0</td>
<td>4.7</td>
<td>3.4</td>
<td>8.6</td>
<td>15 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>7.0</td>
<td>6.6</td>
<td>4.5 - 9.5</td>
<td>7.0</td>
<td>6.6</td>
<td>4.5</td>
<td>9.5</td>
<td>20</td>
</tr>
<tr>
<td>BASELINE</td>
<td>5.7</td>
<td>7.0</td>
<td>1.8 - 9.6</td>
<td>5.7</td>
<td>7.0</td>
<td>1.8</td>
<td>9.6</td>
<td>20 >0.05</td>
</tr>
<tr>
<td>US</td>
<td>4.3</td>
<td>5.6</td>
<td>1.2 - 7.5</td>
<td>4.3</td>
<td>5.6</td>
<td>1.2</td>
<td>7.5</td>
<td>15 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>5.0</td>
<td>6.3</td>
<td>2.7 - 7.4</td>
<td>5.0</td>
<td>6.3</td>
<td>2.7</td>
<td>7.4</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2

Table 2. Mean of Total Visual Analogue scores of Hand Instrument and Ultrasound Instrument at different follow-up

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MEAN</th>
<th>SD</th>
<th>95% CI for Mean</th>
<th>LOWER</th>
<th>UPPER</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>1.7</td>
<td>3.1</td>
<td>0.0 - 3.4</td>
<td>1.7</td>
<td>3.1</td>
<td>0.0</td>
<td>3.4</td>
<td>10</td>
</tr>
<tr>
<td>US</td>
<td>1.0</td>
<td>2.8</td>
<td>-0.6 - 2.6</td>
<td>1.0</td>
<td>2.8</td>
<td>-0.6</td>
<td>2.6</td>
<td>10 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>1.3</td>
<td>2.9</td>
<td>0.2 - 2.4</td>
<td>1.3</td>
<td>2.9</td>
<td>0.2</td>
<td>2.4</td>
<td>10</td>
</tr>
<tr>
<td>1ST WEEK</td>
<td>4.7</td>
<td>6.4</td>
<td>1.1 - 8.2</td>
<td>4.7</td>
<td>6.4</td>
<td>1.1</td>
<td>8.2</td>
<td>20 >0.05</td>
</tr>
<tr>
<td>US</td>
<td>3.7</td>
<td>4.8</td>
<td>1.0 - 6.3</td>
<td>3.7</td>
<td>4.8</td>
<td>1.0</td>
<td>6.3</td>
<td>15 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>4.2</td>
<td>5.6</td>
<td>2.1 - 6.3</td>
<td>4.2</td>
<td>5.6</td>
<td>2.1</td>
<td>6.3</td>
<td>20</td>
</tr>
<tr>
<td>2ND WEEK</td>
<td>8.0</td>
<td>8.2</td>
<td>3.5 - 12.5</td>
<td>8.0</td>
<td>8.2</td>
<td>3.5</td>
<td>12.5</td>
<td>20 >0.05</td>
</tr>
<tr>
<td>US</td>
<td>6.0</td>
<td>4.7</td>
<td>3.4 - 8.6</td>
<td>6.0</td>
<td>4.7</td>
<td>3.4</td>
<td>8.6</td>
<td>15 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>7.0</td>
<td>6.6</td>
<td>4.5 - 9.5</td>
<td>7.0</td>
<td>6.6</td>
<td>4.5</td>
<td>9.5</td>
<td>20</td>
</tr>
<tr>
<td>3RD WEEK</td>
<td>5.7</td>
<td>7.0</td>
<td>1.8 - 9.6</td>
<td>5.7</td>
<td>7.0</td>
<td>1.8</td>
<td>9.6</td>
<td>20 >0.05</td>
</tr>
<tr>
<td>US</td>
<td>4.3</td>
<td>5.6</td>
<td>1.2 - 7.5</td>
<td>4.3</td>
<td>5.6</td>
<td>1.2</td>
<td>7.5</td>
<td>15 >0.05</td>
</tr>
<tr>
<td>Total</td>
<td>5.0</td>
<td>6.3</td>
<td>2.7 - 7.4</td>
<td>5.0</td>
<td>6.3</td>
<td>2.7</td>
<td>7.4</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 3. Correlation of Total Plaque scores & Total visual analogue score at different follow-ups

<table>
<thead>
<tr>
<th>PERIOD OF EVALUATION</th>
<th>NUMBER OF PATIENTS</th>
<th>CORRELATION</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>15</td>
<td>0.121</td>
<td>0.666</td>
</tr>
<tr>
<td>1ST WEEK</td>
<td>15</td>
<td>-0.129</td>
<td>0.647</td>
</tr>
<tr>
<td>2ND WEEK</td>
<td>15</td>
<td>-0.256</td>
<td>0.357</td>
</tr>
<tr>
<td>3RD WEEK</td>
<td>15</td>
<td>0.135</td>
<td>0.632</td>
</tr>
</tbody>
</table>
REFERENCES:

Mandibular 1st premolar shows a considerable variation in root canal morphology. The internal anatomy of mandibular 1st premolar is particularly complex due to their variation in the number of roots and canal configuration. Studies on root canal anatomy are usually done by radiography, clearing technique, plastic resin injection technique, and direct observation with microscope and macroscopic sections. Conventional radiography has the problem of superimposition and moreover it is a two dimensional representation of a three dimensional object. The difficulties associated with other methods of study include disturbance of pulp space and its surrounding structures during preparation of the teeth. All races and ethnic groups have some degree of dental anatomic variations. Asian populations show one of the widest variations in coronal shape, external root form and canal morphology (Thews et al. 1979, Harris 1980, Roos & Evanchik 1981, cecic et al.1982, Yang et al. 1988). Aim of this invitro study was to assess the variations in root canal morphology of mandibular 1st premolar teeth in Kerala population using CBCT.

MATERIALS AND METHODS
In this invitro study 40 extracted mandibular 1st premolar teeth for orthodontic treatment at different dental clinics, private hospitals and dental colleges of Kerala population were collected and stored in formalin solution.

- INCLUSION CRITERIA: Teeth with mature root apex irrespective of age and sex
- EXCLUSION CRITERIA: Teeth with open apex, complicated fracture, external root resorption communicating with root canal or grossly damaged teeth were discarded.

All attached soft tissues and calculus are removed by using an ultrasonic scaler. Modelling wax were used to make occlusal rims and the teeth were arranged after determining the various aspects of the tooth i.e., Buccal, lingual, mesial and distal, so as to maintain uniformity in the samples.

A total of 2 wax blocks were needed for arranging all the 40 teeth. The two wax blocks having teeth arranged is placed in CBCT scanning machine as like upper and lower jaw together. The two blocks were stabilized together by placing sticky wax in between teeth. The teeth were scanned using SIRONA ORTHOPHOS XG SCANNING machine and analyzed using Galilio software.

DISCUSSION
CANAL PATTERN
Weine categorized the root canal systems in any root into four simple and directly clinically oriented classifications. Vertucci utilizing cleared teeth which had their pulp cavities stained with hematoxalin dye & found a much more complex canal system and identified eight pulp space configurations. Canal pattern were analyzed using Vertucci’s classification in various populations.

The result of this study show more or less similar to the result of other studies regarding single canal of mandibular first premolar tooth. But this study have shown more frequent type III canal configuration (27.5%) whereas other studies showed more number of type V canal than type III. The highest frequency of simple one canal (type I) was reported as 88.47% in an Iranian population and the lowest was 58.2% among in Jordanian (3). The frequency of simple one-canal pattern in this study lied close to a Jordanian population(58.2%), (3) Turkish (60.5%) (3) and a SriLankan population (64.2%). (3)

The increased prevalence of anatomical variations documented in the present study makes it imperative for analyzing the possibilities of variations in root canal anatomy of mandibular premolars. These aberrations demand the need for proper diagnosis, treatment planning and careful execution of the treatment modality. Any failure of a root canal treated mandibular premolar demands the clinician to think about

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velmuragan and Sandhya (13)</td>
<td>India</td>
<td>72</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Awadleh and Al-Qudah (15)</td>
<td>Jordan</td>
<td>56.2</td>
<td>4.8</td>
<td>1.4</td>
<td>14.4</td>
<td>16.8</td>
<td>0.8</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Khidmat et al. (3)</td>
<td>Iran</td>
<td>88.47</td>
<td>1.84</td>
<td>3.22</td>
<td>0.9</td>
<td>4.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jain and Bahuguna (20)</td>
<td>India</td>
<td>87.39</td>
<td>7.97</td>
<td>3.62</td>
<td>2.89</td>
<td>17.39</td>
<td>0.72</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Present study</td>
<td>Kerala</td>
<td>57.5</td>
<td>0</td>
<td>27.5</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2- Canal configuration of mandibular first premolar according to Vertucci’s classification in various populations.

In 1984, Vertucci (3) determined canal numbers and configurations by percentages for each of the human permanent teeth and this can be considered as a baseline point for root canal anatomy comparison. In this study out of the 40 samples studied, 23 teeth (57.5%) showed Vertucci’s classification I configuration, 11 teeth (27.5%) samples showed Vertucci’s class III and 6 teeth showed type V (15%).

Table 1- canal patterns observed

<table>
<thead>
<tr>
<th>Type of canal</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>23</td>
<td>57.5</td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>27.5</td>
</tr>
<tr>
<td>V</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

The frequency of class V (1-2 pattern) was reported in a Sri-Lankan population (28.4%) (3) compared to the current study (14%).

The two blocks were stabilized together by placing sticky wax in between teeth. The teeth were scanned using SIRONA ORTHOPHOS XG SCANNING machine and analyzed using Galilio software.

Figure 2- Teeth arranged in Occlusal Rim

Figure 3- Teeth samples in Scanning Machine

Figure 5- showing different canal patterns

The result of this study show more or less similar to the result of other studies regarding single canal of mandibular first premolar tooth. But this study have shown more frequent type III canal configuration (27.5%) whereas other studies showed more number of type V canal than type III. The highest frequency of simple one canal (type I) was reported as 88.47% in an Iranian population and the lowest was 58.2% among in Jordanian (3). The frequency of simple one-canal pattern in this study lied close to a Jordanian population(58.2%), (3) Turkish (60.5%) (3) and a SriLankan population (64.2%). (3) The highest
these variations, so that the tooth can be salvaged.

CONCLUSION
Observations of the current study confirmed the presence of ethnic differences among various races and provided some information about the internal anatomy of the mandibular first premolar in the Kerala population. Further studies are recommended for other teeth to develop a comprehensive picture for dentition in Kerala population. One notable finding is as the length of tooth increases there is more chances for variation in canal pattern. This study also confirms that CBCT has potential as an auxiliary tool in the evaluation of mandibular premolars with complex canal morphology to improve the quality of root canal therapy. CBCT scanning is of great value in detecting anomalous canal morphology when diagnosis by conventional radiography is inconclusive.

REFERENCES:

Indirect sinus lift – an approach for placement of implants in deficient maxillary ridges: A case report

Angel Fenol, Ashitha Mohandas, Jayachandran, Susan Jebi

ABSTRACT:
The maxillary posterior edentulous region presents many challenges for an implantologist as deficient alveolar ridges can jeopardize the placement of implants in posterior maxilla due to the presence of maxillary sinus. The present report describes the case of a 35 year old man with a missing 26 and deficient maxillary ridge. An indirect sinus lift was done and bone graft was placed followed by implant placement in the same site. Osteotomies were used to prevent perforation of sinus lining during implant placement ensuring a successful restoration.

KEYWORDS: Deficient maxilla, sinus lift, bone graft

INTRODUCTION
Implant dentistry has become an excellent treatment modality since its inception into the modern era of dentistry. The posterior maxilla is one of the most challenging sites to place an implant as far as an implantologist is concerned due to its various anatomical landmarks. Ridge resorption and sinus pneumatization are of primary concern. Various techniques like sinus lifting procedure enables the additional anchorage and stability in implants placed support in maxillary segments in atrophic ridges and pneumatic sinuses.

CASE REPORT
A 47 year old male patient in good health reported with the chief complaint of difficulty in chewing because of missing teeth in left upper back jaw region. On intra oral examination, left first molar was missing (Figure 1). After complete radiographic examination, it was observed that the height of the bone available for the implant in relation to first molar was 7.5 mm. After thorough examination it was decided to lift up the sinus lining with an indirect approach through alveolar crest using osteotomes and simultaneously place implants of 11 mm length and 4.2 mm diameter and

Access this article online
Website: jcops.copsonweb.org
Quick Response Code

Address for Correspondence: Ashitha Mohandas, Brindavan, Nakkadi lane, Gandhi road, Calicut, Kerala, India.
E-mail: ashitam@gmail.com
Date of Submission: 4-07-2016
Date of acceptance: 22-07-2016
restore them. Pre-operatively, patient was subjected to a detailed clinical and radiographic examination of the soft and hard tissue. A written consent was obtained from the patient. Available bone height was recorded on using CBCT. On the day of surgery patient was prepared and was appropriately anaesthetized with local anesthesia. A mid creetalincision was made and a full thickness flap was reflected (figure 2). The implant osteotomy sites were then prepared upto 7mm (figure 3). The sinus floor was carefully elevated using sequential osteotomes and a mallet with controlled force (figure 4). The sinus floor was fractured with repeated osteotome insertion bone graft was placed. (Novabone putty)[figure 5]. The implant was then tapped gently into the prepared site. This procedure pushed the bone graft material upward, leading to lifting of the sinus membrane 2 mm ahead of the implant (figure 6). The primary stability of the implant was checked. The cover screw was then placed (figure 7), and sutures were given (figure 8). An IOPAR of the site was taken post operatively (Figure 9).

DISCUSSION
Implant treatment in the posterior maxilla was reported as the least predictable region for implant survival due to inadequate bone height, poor bone density, presence of maxillary sinus. However with the advancement in the field of dentistry implant supported prosthesis is no longer a challenge. The indirect/closed sinus lift using osteotomes is an effective and less complicated method for the placement of implants in the posterior maxillary ridges less of a challenge. The sinus floor was carefully elevated using sequential osteotomes and a mallet with controlled force (figure 4). The sinus floor was fractured with repeated osteotome insertion bone graft was placed. (Novabone putty)[figure 5]. The implant was then tapped gently into the prepared site. This procedure pushed the bone graft material upward, leading to lifting of the sinus membrane 2 mm ahead of the implant (figure 6). The primary stability of the implant was checked. The cover screw was then placed (figure 7), and sutures were given (figure 8). An IOPAR of the site was taken post operatively (Figure 9).

CONCLUSION
Sinus lift techniques have made implant placement in deficient posterior maxillary ridges less of a challenge. The indirect/closed sinus lift using osteotomes is an effective and less complicated method for the placement of implants in moderately atrophied ridges of the posterior maxilla. Even in compromised cases, by good evaluation of both patient’s desires and the available possibilities and by choosing the suitable technique, the likelihood of success increases greatly.

REFERENCES
7. Fugazzotto PA, De PS. Sinus floor augmentation at the time of maxillary molar extraction: success and failure rates of 137 implants in function for up to 3 years. J Periodontol, 2002;73:39-44
Case Report

Bittu Saira Koshy, Jaideep Mahendra, R. Vijayalakshmi

Abstract:
Gingival recession (GR) can cause functional and aesthetic problems with breakdown of both hard and soft tissues. It is clinically manifested by an apical displacement of the gingival tissues, leading to root surface exposure. Root hypersensitivity, erosion, root caries and esthetics can be of concern for patients with gingival recession. An array of therapeutic options are available for the management of GR by pedicle flap procedures or by free soft tissue graft procedures. But these technique sensitive procedures have led to an unpredictable healing outcomes. To overcome the post operative discomfort of the patient and complications, this new techniques have been recently suggested for the surgical treatment of both isolated or multiple recession type defects for better healing and patient compliance. Of late, vestibular incision subperiosteal tunnel access (VISTA) technique had shown a success rate of 85-90%.

This case report describes the use of VISTA technique in combination with platelet-rich fibrin (PRF), an autologous membrane to provide better healing and coverage of GR defects.

Keywords: Gingival recession, platelet-rich-fibrin, root coverage

Conflict of Interest: None declared

Source of Support: Nil

Introduction:
Gingival recession (GR) is the apical migration of the gingival margin beyond the cemento-enamel junction. It can lead to major functional and esthetic problems and is clinically related to a higher incidence of hypersensitivity, attachment loss, root caries, difficulty in oral hygiene control and esthetic concerns. Gingival recession is caused by various anatomic modifications such as root anomalies, pathologic conditions such as periodontal disease, physiological and iatrogenic factors. It can be limited to one tooth or multiple teeth. Recession can be treated through many surgical techniques but each technique has its own advantages and disadvantages. To enhance the growth, platelet-rich fibrin (PRF), a second-generation platelet concentrate, is obtained from autologous blood with simplified processing without the need for biochemical blood handling.

It has become a focus of studies because of its potential to accelerate healing by releasing the growth factors into the defect area. Connective Tissue Graft (CTG) is considered as gold standard for root coverage. Numerous studies have illustrated various tunnel approaches with CTGs or allografts that maintain papillary integrity and avoid vertical-releasing incisions.

The common tunnel preparation techniques creates either a sub- or supra-periosteal space to extend beyond the gingival collar by primarily using an intrasulcular approach. Technically challenging nature of intrasulcular tunneling and the increased risk of traumatizing and perforating the sulcular tissues are some of the limitations of these techniques especially in the esthetic region. As a consequence of these limitations, the Vestibular Incision Subperiosteal Tunnel Access (VISTA) approach was developed in order to avoid the potential complications of intrasulcular tunneling technique.

In this case report, we used novel and minimally invasive VISTA technique in combination with PRF in the treatment of multiple gingival recession defects.

Case Report

A 35-year-old patient came to our Department of Periodontology, Meenakshi Ammal Dental College with the chief complaint of sensitivity in relation to 23,24,25. On elaboration, patient did not present any medical history. Extra oral examination revealed no palpable lymph node, no facial asymmetry, no pain or clicking sound of TMJ. Intra oral examination revealed that the patient presented with Class I Miller’s recession in relation to 23, 24, 25 [Fig 1]. Since adequate width of attached gingiva was present, root coverage was planned with VISTA technique in relation to 23, 24, 25 along with PRF membrane.

At the initial visit, patient underwent Phase 1 therapy and instructed strict oral hygiene maintenance. To rule out any underlying systemic conditions, patient underwent blood investigation before surgical procedure. Patient was informed about the surgery and patient’s consent was taken.

Surgical Technique

On the day of surgery, patient was comfortably positioned on the dental chair. Following the aseptic conditions in the operation area, patient was infiltrated 1.5 ml of 2% lignocaine with epinephrine into the vestibular access incision. On the day of surgery, patient was comfortably positioned on the dental chair. Following the aseptic conditions in the operation area, patient was infiltrated 1.5 ml of 2% lignocaine with epinephrine into the vestibular access incision.

The novel and minimally invasive VISTA approach presented in this case report, along with PRF provides a number of unique advantages to the successful treatment of multiple recession defects. In VISTA technique, an access to an entire region is obtained through a single vestibular incision, including visual access to the underlying alveolar bone and root dehiscences. Tension of the gingival margin is reduced through careful subperiosteal dissection during coronal advancement of the flap. By avoiding papillary reflection, anatomical integrity of...
the interdental papillae is maintained.

A vertically oriented initial incision is less likely to disrupt the blood supply as superior alveolar arteries, branches of the internal maxillary artery, run in a superior-inferior orientation. Degree of coronal advancement of the gingival margin advocated during the procedure is one of the important technical difference between the VISTA and other tunneling approaches. As noted earlier, the gingival margin, with PRF membrane, is advanced coronally to the level of the adjacent interproximal papillae rather than to the cementoenamel junction. Apical relapse of the gingival margin during the initial stages of healing are prevented by securing polypropylene sutures (3-0) to the facial aspect of the tooth.

One of the major drawbacks of regenerative healing is micromotion, which promote scar tissue formation. The rigid fixation of gingival margins due to the present coronally anchored suturing technique minimizes micromotion of the regenerative site. Therefore, the major advantage of the present technique over conventional methods is the reduction of micromotion where there is proper adaptation of the gingival margin.

PRF is a second generation of platelet concentrate. It is superior to PRP as the processing is simplified without any complex handling. PRF is mainly used in root coverage procedures as it promotes wound healing, bone regeneration, graft stabilization, wound sealing, and hemostasis. It is efficient to direct stem cell migration and healing program as the fibrin matrix is better organized.

In our study 90% of root coverage was obtained which was in accordance with Aroca et al where mean root coverage was 91.5% in coronally advanced flap combined with PRF. Zadeh et al used VISTA technique along with Bio guide membrane for root coverage of maxillary anterior teeth for treatment of Miller’s Class I and II defects and demonstrated stable, long-term outcomes. A study by Chatterjee et al reported two clinical cases with Miller’s Class I and Class II multiple recession defects treated successfully by VISTA technique with PRF membrane achieving 96% of root coverage thereby concluding that multiple recession defects can be treated with VISTA technique without the need for secondary harvesting procedure.

CONCLUSION

An array of treatment choices exist for the treatment of localized gingival recession; however for multiple defects major functional and esthetic problems exist. Inherent short-comings of some of the current procedures are addressed in multiple recession defects. The present VISTA technique potentially speaks to these short-comings. To conclude VISTA technique can be used successfully in multiple gingival recessions treatment as an alternative to some of the limitations of the current techniques. Long term follow-up as well as further clinical data are required to provide evidence regarding the predictability of this treatment outcome in multiple recession defects.

REFERENCES

Surgical management of a periimplant abscess: A case report

Sruthy Parashothaman, Elizabeth Kuruvilla, Biniraj K R, Rishi Emmatty
Tony P Paul, Aslam A R

Department of Clinical Periodontology and Oral Implantology, Royal Dental College, Palakkad, Kerala, 679536, India.

ABSTRACT:
This case report discusses a case of periimplant abscess, surgically managed by bone regenerative approach. A 22 year old male patient reported with a complaint of fluctuating swelling that subsided and recurred over the edentulous ridge area. The radiograph of that region confirmed it to be a peri implant abscess around the crestal third of an immediate implant placed an year back. The lesion was surgically approached and the defect was filled with bone graft material (OSSEOGRAFT™) and secured with a connective tissue graft over it to secure graft material. The third month follow-up showed no clinical signs or symptoms of the previous lesion and significant bone regeneration was observed radiographically in the bone defect.

Key words: Bone Regeneration, Periimplant abscess, immediate implants

INTRODUCTION
A 22 year old systemically healthy male patient was referred to our department of clinical periodontology and oral implantology, with a fluctuant swelling on the maxillary right posterior edentulous ridge area. He revealed a history of 2 immediate implants being placed in this region 1 year ago. The swelling was noticed since 6 months which was painless and kept occurring intermittently and disappeared following purulent discharge through a sinus opening. The immediate implants were placed following extraction of root stumps of 15 and 16 resulting from endodontic treatment failure. According to his old radiograph, all the extracted teeth had peri apical radiolucency confirmed to be peri apical granuloma at the time of extractions.

On clinical examination, swelling was about 6×6mm in size with a sinus opening (Figure 1). On radiographic examination with placement of a gutta percha point into the sinus opening, vertical bone loss was noticed around the coronal 1/3 rd of implant with the gutta percha point directed to the posterior implant margin with vertical bone loss (Figure 2). On the time of extractions.

On clinical examination, swelling was about 6×6mm in size with a sinus opening (Figure 1). On radiographic examination with placement of a gutta percha point into the sinus opening, vertical bone loss was noticed around the coronal 1/3 rd of implant with the gutta percha point directed to the posterior implant margin with vertical bone loss (Figure 2). One of the main limitations of such surgery is graft stability and eventual loss owing to its position adjacent to implant wall and also exposure of cover screw following healing. The connective tissue of the raised flap was separated from the flap and was pediculated and sutured over the bone graft material into the surrounding periosseous to secure the graft material in position. The raised flaps were approximated over the implant surface involving the swelling. The implant was confirmed for its integration and observed to have no signs of mobility.

The granulation tissue around the implants was curedtted with plastic curettes. The granulation tissue that was projecting from the sinus opening and the patient was recalled after a week the healing took place uneventfully and the sutures were removed on the 10th day after surgery.

The patient was recalled after 3 months for review. There was no evidence of clinical signs or symptoms of swelling or sinus tract in the operated site (Figure 8). The area appeared clinically normal.

Conflict of Interest: None declared
Source of Support: Nil

MANAGEMENT
A surgical treatment with an objective of abscess elimination and bone regeneration around the lesion was planned. A written consent was obtained from the patient prior to the surgery explaining about the procedure and possible chance of recurrence of the lesion. The fluctuant swelling was massaged gently and purulent discharge was drained completely through the sinus opening and the patient was recalled after a week the surgical management.

Antiseptic of surgical area was carried out through aqueous solution of 0.12% chlorhexidine digluconate. After local anesthesia with lignocaine solution, the implant site was approached with a semilunar incision along the outer margins of the swelling. A full thickness mucoperiosteal flap was elevated over the implant surface involving the swelling. The implant was confirmed for its integration and observed to have no signs of mobility. The granulation tissue around the implants was curedtted with plastic curettes. The granulation tissue that was projecting from the sinus opening and the patient was recalled after a week.

The patient was recalled after 3 months for review. There was no evidence of clinical signs or symptoms of swelling or sinus tract in the operated site. The area appeared clinically normal.

The patient was instructed to rinse with an appropriate antimicrobial agent twice daily for 2 weeks. Antihistotics (Amodocillin 500 mg) and a non-steroidal anti-inflammatory drug (Paracetamol 500mg) were given post operatively for 5 days. The healing took place uneventfully and the sutures were removed on the 10th day after the surgery.

The patient was recalled after 3 months for review. There was no evidence of clinical signs or symptoms of swelling or sinus tract in the operated site. The area appeared clinically normal.

The patient was instructed to rinse with an appropriate antimicrobial agent twice daily for 2 weeks. Antihistotics (Amodocillin 500 mg) and a non-steroidal anti-inflammatory drug (Paracetamol 500mg) were given post operatively for 5 days. The healing took place uneventfully and the sutures were removed on the 10th day after the surgery.

The patient was recalled after 3 months for review. There was no evidence of clinical signs or symptoms of swelling or sinus tract in the operated site. The area appeared clinically normal.

The patient was instructed to rinse with an appropriate antimicrobial agent twice daily for 2 weeks. Antihistotics (Amodocillin 500 mg) and a non-steroidal anti-inflammatory drug (Paracetamol 500mg) were given post operatively for 5 days. The healing took place uneventfully and the sutures were removed on the 10th day after the surgery.

The patient was recalled after 3 months for review. There was no evidence of clinical signs or symptoms of swelling or sinus tract in the operated site. The area appeared clinically normal.

The patient was instructed to rinse with an appropriate antimicrobial agent twice daily for 2 weeks. Antihistotics (Amodocillin 500 mg) and a non-steroidal anti-inflammatory drug (Paracetamol 500mg) were given post operatively for 5 days. The healing took place uneventfully and the sutures were removed on the 10th day after the surgery.

The patient was recalled after 3 months for review. There was no evidence of clinical signs or symptoms of swelling or sinus tract in the operated site. The area appeared clinically normal.
clinically normal. On radiographic examination, there was clear evidence of complete bone fill in the defect area around the implant (Figure 9).

CONCLUSION
The present case described a variant technique of guided bone regeneration to manage periimplant abscess. This procedure could achieve complete restoration of periimplant mucosa with radiographically evident complete bone regeneration in a 3 month review. There are several studies which support the present case report wherein periimplant bone loss is successfully treated by different regenerative approaches with the use of bone graft materials. The quality of the bone which is regenerated in the present case report is not evaluated by histological studies or by reentry surgeries. The long term success rate of such treatment can only be evaluated by regular follow ups and maintenance.

REFERENCES
1. Fabrizio Bassi et al; Surgical Treatment of Peri-Implantitis: A 17-Year Follow-Up Clinical Case Report; Hindawi Publishing Corporation Case Reports in Dentistry Volume 2015, Article ID 574676
3. Ali Saad Thafeed AlGhamdi; Successful Treatment of Early Implant Failure:A Case Series; Clinical Implant Dentistry and Related Research, Volume 14, Number 3, 2012; 380-87

Peripheral Cementifying Fibroma: A Case Report

Milly Trivedi, Shalini Gupta, Vasumati Patel, Hiral Purani, Krishnan Saraiya, Ajesh Fadadu

ABSTRACT:
Peripheral cementifying fibroma is one of the inflammatory reactive hyperplasia of gingiva rather than neoplastic in nature. There are numerous histologically different types of focal overgrowths which may occur in gingiva. A clinical case report of 15 years old male patient with gingival overgrowth suggesting gradually increase in size of lesion, involving buccal interdental papilla and attached gingiva in relation to upper left and right central incisor which is pink in color and firm in consistency is presented. Histological reports suggested presences of cementicles along with large number of inflammatory cells.

Key words: Gingival overgrowth, ossifying fibroma, cementicles.

INTRODUCTION
Peripheral cementifying fibroma is a non neoplastic entity, which occurs on the gingiva in response to trauma or irritation, plaque, calculus, restorations and dental appliances. Considerable confusion has prevailed in the nomenclature of peripheral ossifying fibroma with various synonyms being used, such as peripheral cementifying fibroma, ossifying fibroepithelial polyp, peripheral fibroma with osteogenesis, peripheral fibroma with cementogenesis, peripheral fibroma with calcification, calcifying or ossifying fibrous epulis and calcifying fibroblastic granuloma. It occurs in the younger age group with a female preponderance with a predilection for maxillary arch. Most of them occur in the incisor cuspid region. It is usually present as a painless mass on gingiva or alveolar mucosa with measurements not exceeding 3cm. It can be either be pedunculated or sessile with its attachment to base. Clinically earlier lesions appear irregular and red and older lesions have a smooth pink surface with ulceration.

CASE REPORT
A 15 years old male patient reported to the department of periodontology with a chief complaint of growth of gums in upper front teeth since one month.
Patient had no systemic illness and was not on any medication. The lesion had gradually increased in size during previous few days. On intra oral examination a solitary, pedunculated mass involving buccal interdental papilla and attached gingiva in relation to upper left and right central incisor was seen (figure 1). Intra oral periapical radiograph showed no significant bone loss (figure 2). Mass was pink in color with a smooth surface, measuring approximately 1.5 cm × 2 cm and extending from mesial interdental papilla of right central incisor to distal surface of left central incisor. No surface ulceration was noted. On palpation, it was non tender and firm in consistency.

The provisional diagnosis of peripheral ossifying fibroma was made. The differential diagnosis included traumatic fibroma, pyogenic granuloma and peripheral giant cell granuloma. Treatment included thorough scaling and root planning to eliminate the irritating factors (figure 3). After a week, complete surgical excision of the lesion was performed under local anesthesia. Complete removal of the lesion and gingival curettage was ensured (figure 4). Application of periodontal dressing (coe-pack) (figure 5) and Oral hygiene maintenance instructions were given to the patient. Healing was uneventful. Patient was recalled after 7 days (figure 6) and follow up visit after 3 months respectively (figure 7).

HISTOLOGIC EXAMINATION

The sample was sent to oral pathology department at faculty of dental science, Dharamsinh desai university, Nadiad for laboratory investigation. On histopathological examination, upon low power magnification (4x) (figure 8), the tissue exhibited a hyperkeratinized stratified squamous epithelium (gingiva), overlying a fibrous connective tissue stroma exhibiting dense interlacing mature bundles of collagen (figure 9). High power magnification (40x) showed presence of cemetocytes (figure 10). Large number of acute and chronic inflammatory cells, dilated engorged blood vessels and areas of hemorrhage were seen. The picture is consistent with the clinical diagnosis of peripheral cementsifying fibroma.

DISCUSSION

Gingiva is one of those anatomical regions in the oral cavity with the broadest array of lesions occurring ranging from inflammatory to neoplastic. Peripheral cementsifying fibroma (PCF) is one such reactive lesion, which occurs exclusively on gingiva. It accounts for 9.6% of gingival lesions. The more common terminology used for peripheral cementsifying fibroma is peripheral ossifying fibroma. Both represent same state of clinical picture and in histology difference in predominant cell type is noted.

Histogenesis remains controversial and there are two schools of thought proposed to understand the histogenesis of PCF.

- PCF may initially develop as pyogenic granuloma that undergoes subsequent fibrous maturation and calcification. It represents the progressive stage of the same spectrum of pathosis.1
- PCF is due to inflammatory hyperplasia of cells of periodontal ligament/perioseum. Metaplasia of the connective tissue leads to dystrophic calcification and bone formation.2

Triggering factors such as subgingival plaque and calculus, dental appliances, poor quality of dental restorations, microorganisms and food lodgement initiate the inflammatory response. Only 0.5% cases are reported in older age group.11 There is a female predilection for the lesion due to the hormonal influences.12 PCF is usually seen anterior to molars, especially in incisor canine region.10

POF has to be differentiated from other reactive lesions of a gingiva such as pyogenic granuloma, peripheral giant cell granuloma (PGCG) and peripheral odontogenic fibroma. Pyogenic granuloma shows red mass with surface ulceration clinically and microscopically exhibit vascular proliferation resembling granulation tissue. PGCG shows scattered giant cells in a fibrous stroma. Peripheral odontogenic fibroma contains prominent islands of odontogenic epithelium. Bone involvement, though not significant in most of the cases, some alterations are noted like superficial erosion of bone, foci of calcifications, widening of the periodontal ligament space and thickened lamina dura, migration of teeth with interdental bone loss.13

Treatment of peripheral cementsifying fibroma requires proper surgical intervention that ensures deep excision of the lesion including periosteum and affected periodontal ligament. Thorough root scaling of adjacent teeth and/or removal of other sources of irritants should be accomplished. In children, reactive gingival lesions can exhibit an exuberant growth rate and reach significant size in a relatively short period of time. In addition, the POF can cause erosion of bone, can displace teeth, and can interfere or delay eruption of teeth. Early recognition and definitive surgical intervention result in less risk of tooth and bone loss.14 The recurrence rate varies from 7 to 20% according to different authors.15

CONCLUSION

PCF is a pathological entity whose histogenesis is yet to be delineated. Clinico pathological characteristics may vary and on the contrary to the usual presentation, our case presented a different age, sex and site of POF. Treatment consists of surgical excision, including through scaling and root planning. Close postoperative followup os required because of growth potential of incompletely removed lesion and the 8%-20% recurrence rate.

REFERENCES

ABSTRACT:
Chondromas are benign tumours of hyaline cartilage that are usually found in the bones of the extremities. Extra-skeletal chondromas have been rarely reported in the soft tissues of the head and neck region. Among them, only very few cases have been reported in the oral cavity. The present case documents a soft tissue chondroma in a 25 year old female patient that presented as a swelling on the tongue. The importance of histopathologic examination which leads to a conclusive diagnosis and a review of the relevant literature is also included.

KEYWORDS: Chondroma, soft tissue chondroma, tongue, oral.

INTRODUCTION:
Chondromas are benign tumours of hyaline cartilage, that are usually found in the bones of the extremities. Soft tissue chondromas are extra-skeletal tumors and are not attached to bone, synovium or periosteum. They commonly occur in the soft tissues of hands and feet. 1-3 A few cases have been reported in the oral cavity. The common intraoral sites reported are the tongue, buccal mucosa, hard and soft palate and the edentulous ridge. 4-6 The tumour mainly affects adults 30-60 years of age and is rare in children. 7, 8 They usually have a benign clinical course and appear as asymptomatic, slow growing and well defined nodular lesions.9,10 Though it is usually diagnosed by its histopathologic features, it can sometimes be confused and needs to be differentiated from chondrosarcoma, a malignant tumour of the cartilage. A thorough histopathologic evaluation for rendering an accurate diagnosis is necessary to spare the patient from unnecessary radical treatment, which may arise from erroneous diagnosis. A case of extra-skeletal chondroma of the tongue, along with a review of related literatures presented here.

CASE REPORT:
A 25 year old female patient was referred to the Department of Oral and...
Maxillofacial Surgery complained of a painless swelling on the under-surface of the tongue. She first noticed the swelling one and a half years back. It grew very slowly to reach the present size. Intra oral examination revealed an ovoid nodular mass measuring 1x1x1 cm, on the ventral surface of the tongue on the anterior part. On palpation, it was found to be firm, painless and non-fluctuant (Figure 1). Considering a differential diagnosis of traumatic fibroma, neurofibroma or Schwannoma, which were the most common nodular swellings to occur on the tongue, an excisional biopsy of the lesion was performed under local anaesthesia.

The excised specimen appeared as a creamy white mass, measuring 1 cm in diameter and was firm to hard in consistency. It was processed and submitted for histopathological evaluation.

Microscopic examination revealed lobules of mature benign hyaline cartilage in a fibrous connective tissue stroma (Figure 2). The cartilage consisted of bland appearing chondrocytes within lacunae (Figure 3). There was no evidence of cytological atypia, mitosis or necrosis. Superficial stratified squamous epithelium was also observed.

Based on these findings, a diagnosis of ‘Soft Tissue Chondroma of the tongue’ was made.

DISCUSSION:

Chondromas are benign tumors arising from cartilaginous tissue. They occur within various bones of the body. The incidence of soft tissue chondromas outside the skeletal system is very rare. They usually occur in the soft tissues of the extremities. Soft tissue chondromas of the oral cavity are very rare. They usually occur in the soft tissues of the tongue. The Metaplastic theory suggests that heterotopic cartilage remnants from the bronchial arches get displaced during the development and get sequestered in the tongue or other oral soft tissues. It is extremely important to differentiate this tumor histologically from chondrosarcoma, which is a malignant neoplasm of the cartilage. Well differentiated extra skeletal chondrosarcoma will show abnormal mitoses, atypism and necrosis. Mesenchymal chondrosarcoma is another chondroid malignancy with a characteristic dimorphic pattern composed of well differentiated cartilage surrounded by small undifferentiated tumor cells. Our case showed the typical histopathologic features of chondroma with the chondrocytes exhibiting no cellular atypia or abnormal mitosis. Different theories have been proposed as to the origin and occurrence of Chondromain the oral soft tissues. The enzinger’s theory suggests that heterotopic cartilage remnants from the bronchial arches get displaced during the development and get sequestered in the tongue or other oral soft tissues. The Metaplastic theory explains the chondromas located on the lateral border, ventral surface or tip of the tongue, especially in an older age group. It suggests that factors like trauma or chronic irritation can stimulate metaplasia and subsequent development and get sequestered in the tongue or other oral soft tissues. The high incidence of the recently described ‘ectomesenchymal Chondro-osseous tumours’ of the tongue may be explained by a possible pathogenic mechanism involving the para-physiologic cartilaginous tissue of the lingual septum (referred to as ‘knorpelinsel’). This theory may also be used to explain the occurrence of chondrosarcomas of the tongue.

REFERENCES:

Single Rooted Permanent Maxillary Molars with Vertucci’s Type I canal configuration: 3 Rare Case Reports

Krishna Prasada Laskhari, Rajana Raghunath

ABSTRACT:
Unusual root canal morphology in maxillary molars is constant challenge for diagnosis and successful endodontic treatment. Presence of additional canals, lateral canals and deltas are mostly encountered but the probability of existence of less number of roots and canals also occurs. These deviations are also one of the major grounds for endodontic failure owing to inadequate cleaning, shaping and sealing of root canal system. The present paper highlights two case report about maxillary molars with type I canal morphology. It is concluded that the diagnosing of these unusual cases is of high importance for successful endodontic treatment of these teeth. Dentists are required to have adequate knowledge related to root canal morphology and their possible variations.

Keywords: Permanent Maxillary Molars, Maxillary First Molar, Maxillary Second Molar, Single Root, Single Canal Morphology

INTRODUCTION
The diversity and complexity of root canal anatomy are constant challenge for diagnosis and successful endodontic therapy, particularly in multi-rooted teeth. Thus, it is indispensable for the clinician to have a thorough knowledge of root canal anatomy and its variations. Anatomic variations in permanent maxillary molars have been reported earlier and they pertain to the incidence of supplementary canals, roots or fused roots and “C”-shaped canal. Single rooted maxillary molar is unusual, and even scarcer in case of maxillary first permanent molar. The foremost objectives of root canal treatment are thorough cleaning and shaping of all the canals. Dentists must be able to envision the internal anatomy of teeth before undertaking endodontic therapy. Endodontic success can be achieved together with diagnosis, treatment and knowledge of root canal morphology and its recurrent variations.

Conflict of Interest: None declared
Source of Support: Nil

CASE REPORT 1
A 17-year-old Indian female presented to the Department of Conservative Dentistry and Endodontics, K.V.G Dental College and Hospital, Karnataka, India with the chief complaint of dull toothache in her left posterior maxilla for 20 days. On thermal stimuli and on mastication the pain was intensified. Medical history of the patient was noncontributory.

On clinical examination, there was decay on left maxillary first molar which was tender on percussion. The tooth was not mobile and periodontal probing around the tooth was within physiological limits. Vitality testing of the involved tooth with heated gutta-percha, dry ice and electronic pulp stimulation caused no response suggestive of non-vital tooth. A preoperative radiograph revealed a coronal disto-occlusal radiolucency approaching the pulp space [Figure 1]. On the basis of clinical and radiographic findings, the patient was advised root canal treatment in relation to tooth # 26. After obtaining patient’s consent, the tooth was anesthetized with 1.8 mL 2% lignocaine containing 1:200,000 epinephrine followed by rubber dam isolation. Access preparation was modified to completely de-roof the pulp chamber, which showed the presence of a single wide root canal orifice. Presence of only one single canal and no other canal orifice was revealed on examination under a surgical operating microscope. With the help of an apex locator which was later confirmed using a radiograph the working length was determined. Multiple working length radiographs were taken at different angulations.

Cleaning and shaping was done using crown-down technique with ISO hand files and ProTaper nickel-titanium rotary instruments. Irrigation was performed using normal saline, 2.5% sodium hypochlorite solution, with 17% ethylenediamine tetracetic acid and chlorhexidine being used as the final irritant. With absorbent points the canals were dried, and using cold lateral compaction of gutta-percha obturation was completed [Figure2].

CASE REPORT 2
A 25-year-old male patient visited the Department of Conservative Dentistry and Endodontics, K.V.G Dental College and Hospital, Karnataka, India. His primary complaint was spontaneous pain on the left maxillary second molar [figure 3, 4]. Clinical and radiographexamination revealed fractured occlusal amalgam restoration in relation to tooth # 26. After obtaining patient’s consent, the tooth was anesthetized with 1.8 mL 2% lignocaine containing 1:200,000 epinephrine followed by rubber dam isolation. Access preparation was modified to completely de-roof the pulp chamber, which showed the presence of a single wide root canal orifice. The probability of existence of less number of roots and canals also occurs. These deviations are also one of the major grounds for endodontic failure owing to inadequate cleaning, shaping and sealing of root canal system. The present paper highlights two case report about maxillary molars with type I canal morphology. It is concluded that the diagnosing of these unusual cases is of high importance for successful endodontic treatment of these teeth. Dentists are required to have adequate knowledge related to root canal morphology and their possible variations.

Keywords: Permanent Maxillary Molars, Maxillary First Molar, Maxillary Second Molar, Single Root, Single Canal Morphology

INTRODUCTION
The diversity and complexity of root canal anatomy are constant challenge for diagnosis and successful endodontic therapy, particularly in multi-rooted teeth. Thus, it is indispensable for the clinician to have a thorough knowledge of root canal anatomy and its variations.

Anatomic variations in permanent maxillary molars have been reported earlier and they pertain to the incidence of supplementary canals, roots or fused roots and “C”-shaped canal. Single rooted maxillary molar is unusual, and even scarcer in case of maxillary first permanent molar. The foremost objectives of root canal treatment are thorough cleaning and shaping of all the canals. Dentists must be able to envision the internal anatomy of teeth before undertaking endodontic therapy. Endodontic success can be achieved together with diagnosis, treatment and knowledge of root canal morphology and its recurrent variations.

Conflict of Interest: None declared
Source of Support: Nil

CASE REPORT 1
A 17-year-old Indian female presented to the Department of Conservative Dentistry and Endodontics, K.V.G Dental College and Hospital, Karnataka, India with the chief complaint of dull toothache in her left posterior maxilla for 20 days. On thermal stimuli and on mastication the pain was intensified. Medical history of the patient was noncontributory.

On clinical examination, there was decay on left maxillary first molar which was tender on percussion. The tooth was not mobile and periodontal probing around the tooth was within physiological limits. Vitality testing of the involved tooth with heated gutta-percha, dry ice and electronic pulp stimulation caused no response suggestive of non-vital tooth. A preoperative radiograph revealed a coronal disto-occlusal radiolucency approaching the pulp space [Figure 1]. On the basis of clinical and radiographic findings, the patient was advised root canal treatment in relation to tooth # 26. After obtaining patient’s consent, the tooth was anesthetized with 1.8 mL 2% lignocaine containing 1:200,000 epinephrine followed by rubber dam isolation. Access preparation was modified to completely de-roof the pulp chamber, which showed the presence of a single wide root canal orifice. Presence of only one single canal and no other canal orifice was revealed on examination under a surgical operating microscope. With the help of an apex locator which was later confirmed using a radiograph the working length was determined. Multiple working length radiographs were taken at different angulations.

Cleaning and shaping was done using crown-down technique with ISO hand files and ProTaper nickel-titanium rotary instruments. Irrigation was performed using normal saline, 2.5% sodium hypochlorite solution, with 17% ethylenediamine tetracetic acid and chlorhexidine being used as the final irritant. With absorbent points the canals were dried, and using cold lateral compaction of gutta-percha obturation was completed [Figure2].

CASE REPORT 2
A 25-year-old male patient visited the Department of Conservative Dentistry and Endodontics, K.V.G Dental College and Hospital, Karnataka, India. His primary complaint was spontaneous pain on the left maxillary second molar [figure 3, 4]. Clinical and radiographexamination revealed fractured occlusal amalgam restoration in relation to tooth # 26. After obtaining patient’s consent, the tooth was anesthetized with 1.8 mL 2% lignocaine containing 1:200,000 epinephrine followed by rubber dam isolation. Access preparation was modified to completely de-roof the pulp chamber, which showed the presence of a single wide root canal orifice. Presence of only one single canal and no other canal orifice was revealed on examination under a surgical operating microscope. With the help of an apex locator which was later confirmed using a radiograph the working length was determined. Multiple working length radiographs were taken at different angulations.

Cleaning and shaping was done using crown-down technique with ISO hand files and ProTaper nickel-titanium rotary instruments. Irrigation was performed using normal saline, 2.5% sodium hypochlorite solution, with 17% ethylenediamine tetracetic acid and chlorhexidine being used as the final irritant. With absorbent points the canals were dried, and using cold lateral compaction of gutta-percha obturation was completed [Figure2].

CASE REPORT 3
A 38-year-old male patient visited the Department of Conservative Dentistry and Endodontics, K.V.G Dental College and Hospital, Karnataka, India. On examination revealed carious tooth in 27.26 and 27 were sensitive in vertical percussion, coldness and warmth. On access opening of 26 and 27, only single canals were revealed [figure 5].

CASE REPORT 3
A 38-year-old male patient visited the Department of Conservative Dentistry and Endodontics, K.V.G Dental College and Hospital, Karnataka, India. On examination revealed carious tooth in 27.26 and 27 were sensitive in vertical percussion, coldness and warmth. On access opening of 26 and 27, only single canals were revealed [figure 5].
appeared more frequently during the night lasting 2 to 3 hours with brief calming periods. The tooth was sensitive in vertical percussion, coldness and warmness. On access opening of 27 only single canal was discovered. (Figure 7)

DISCUSSION

Dental abnormalities which are formative defects may occur during any of the developmental stages of the tooth, and they are revealed clinically in later life once the tooth is fully formed.

Incidence of additional canal is more recurrent rather than the presence of fused/less number of canals, particularly in the cases of permanent maxillary first molars. Immense disproportion in the root/canal morphology of permanent maxillary molars of Indian origin exists as compared with Caucasian and Mongoloid traits, as reported in a computed tomographic research. The dissimilarities reported in the population were the presence of single root and canal, two separate roots, four separate roots and two fused roots, three fused roots. There are few case reports that were found to have reported dental anomalies such as fused single rooted maxillary molar: Ackerman et al., Holan and Chosack, Gopikrishna et al., Metgud et al. There appears to be a difference in opinion regarding the term used to describe such a tooth, this includes “fused," “Pyramidal," and "conical" but all investigators believe that the failure of invagination of Hertwig epithelial root sheath is accountable for this anomaly.

Maxillary second molars with triple roots and triple canals compared to maxillary second molar that could have a single root and a single canal more often described in endodontic literature. Hartwell & Bellizi concluded that only 0.6% of cases there is presence of maxillary second molar with a single root and a single canal. Libfeld and Rostone assessed 200 radiographies of patients treated in an endodontic therapy in maxillary second molar and reported that this feature was evident in 0.5% of cases. According to Hua Xi et al. the frequency of maxillary second molar with single root and single canal is very unusual.

This paper highlights 3 different case reports where Vertucci’s Type I canals configuration is seen in maxillary permanent molars. Since the incidence of single root and single canal is not high, it is important to confirm the canal configuration before finishing root canal treatment in order to ensure success. Presence of single canal in the 3 cases was evaluated through radiographic assessment and application of operative microscope and a loop. These teeth have good endodontic prognosis, because of wide and accessible canal.

CONCLUSION

Anatomical variation continues to be the most challenging aspect of performing successful endodontic therapy. Quintemore importance is given to extra canals, merging and demerging canals, apical deltas, and lateral canals but the clinician should also focus on the presence of fewer canals. The present case reports highlight the necessity to develop excellent observation skills on the part of the dentist to identify any aberrations from the normal within the tooth, especially in the presence of anomalies in dentition.

REFERENCES

CASE REPORT

Langerhans cell histiocytosis in a 7 month old baby: A case report

Ratheesh M. S., Sherryl Mathew, Vijesh R. Dev

ABSTRACT:
Langerhans cell histiocytosis (LCH) is a rare and unusual disease of unknown etiopathogenesis which is characterised by the clonal proliferation of Langerhans cells (LC) that predominantly occurs in infants and young children. Besides the varied clinical picture, oral manifestations are sometimes the first and the only indication of this disease. Hence the odontologist plays a crucial role in early diagnosis and periodic follow-up to ensure multidisciplinary treatment of such patients. Generally in children, local therapy in the form of curettage would be an appropriate treatment, since patients with localised disease or disease limited to a single organ system have a good prognosis. However due to the high recurrence rate, site of presentation and late stage complications observed in early presentation cases, we describe a case of LCH observed in a child of seven months successfully treated with multi-agent chemotherapy with six month follow-up.

Keywords: Langerhans cell histiocytosis, eruption hematoma, chemotherapy

INTRODUCTION
Langerhans cell histiocytosis is the current designation replacing the term histiocytosis X introduced by the Lichtenstein in 1953 as a unifying designation for several previous eponyms, including Letterer Siwe disease, Hand Schüller Christian disease, and eosinophilic granuloma (LCH or ebone).2-4 Although clinical forms of LCH were first described at least a century ago, its incidence in children is considered less than 2 per 100,000 children.1

LCH is an infrequent disease with an occurrence rate of 2.5 cases per million inhabitants per year with frequency seen in first and third decades of life although it may affect any age group with predominance in males.2,4

The incidence of oral lesions is 77%, therefore the initial diagnosis in many cases is made by the odontologist. In a series of fifty patients with LCH, 36 per cent had oral involvement and the dentist was the first to see them in 16 per cent of the cases.7

CASE REPORT
A 7 month old baby boy reported to the dental clinic with a swelling in the upper left anterior region. History revealed that the patient had trauma with a plastic spoon while feeding one month back. On examination dark red swelling of size 1cm x1.5cm x0.3cm was observed with no history of pain or associated symptoms. (Figure 1) On palpation displacement of 61 was detected. On radiographic examination displacement of 62 and 63 was observed (Figure 2)

Figure 1: Intraoral Examination

Laboratory studies revealed a mild normocytic normochromic anemia (9.73 g/dL; reference range 12.2 to 18.1 g/dL.). Biopsy by conventional microscopy showed fragments of highly cellular neoplasm composed of mononuclear cells arranged in diffuse sheets with close admixture of eosinophils, including the oropharynx and nasopharynx, epiglottus, bronchi, and cervix and are said to be the most potent antigen presenting cells in the body.5 Various hypotheses have been put forward regarding etiology such as dysfunction of immune system, deficiency of suppressor lymphocytes (T8), altered immunoglobulins, autoantibodies, anomalous lymphocytic response to various mitogens, structural changes in thymus, inflammatory origin, bacteriological origin. The systemic alterations result from the accumulation of Langerhans cell that produces different clinical manifestations depending on the location.

The clinical manifestations of LCH range from solitary or multiple bone lesions with a chronic course to progressive disseminated visceral, skin and bone lesions. Alongside the cranium, the maxilla and the mandible are the most affected bones. Oral manifestations may be the first sign of LCH, and on some occasions the oral cavity may be the only area affected 6,10. The incidence of oral lesions is 77%, therefore the initial diagnosis in many cases is made by the odontologist. In a series of fifty patients with LCH, 36 per cent had oral involvement and the dentist was the first to see them in 16 per cent of the cases.7

Intraoral Radiograph

Figure 2: Intraoral Radiograph

Conflict of Interest: None declared

Sulini et al. Langerhans cell histiocytosis

Address for Correspondence: Ratheesh M. S., Department of Pedodontics and Preventive Dentistry, Royal Dental College, Iron Hills, Chalissery, Palakkad, Kerala, India. E-mail: dr.ratheeshms@yahoo.co.in

Date of Submission: 4-07-2016
Date of acceptance: 22-08-2016
Skull showed the regression of the lesion to less than 50% size suggesting disease stability. A six month follow up of the patient showed complete resolution of the lesion but long term periodic follow up is required to identify disease recurrence or late stage complications.

CONCLUSION
Due to its rare occurrence and unassuming appearance, most clinicians may ignore or overlook the possibility of diseases such as LCH on routine oral examination and often diagnose and treat it as commonly occurring conditions such as eruption hematoma. This case report brings to the attention of our fraternity how early diagnosis, periodic recall and multidisciplinary management in a timely manner can help to gain better treatment outcomes with fewer chances of disease progression.

REFERENCES

CASE REPORT
Guided Bone Regeneration in Apicoectomy surgeries: 5 Case series with discussion

ABSTRACT:
Apicoectomy is one of the most commonly performed endodontic surgeries. Though this surgery often results in complete resolution of signs and symptoms of the surgical area like a sinus opening or swellings, it seldom gives a radiographic evidence of bone formation in the surgical site. Guided bone regeneration using particulate bone grafts mixed with Platelet Rich Fibrin (PRF) and barrier membrane can be effectively used for enhancing the predictability of this surgery. A case series of such a few cases are discussed here to bring into light the application of such a technique that take into consideration the wider application of periodontal regenerative techniques.

KEYWORDS: Apicoectomy, barrier membrane, bone graft, regenerative therapy

INTRODUCTION
Apicoectomy surgery is often considered the final attempt to save an endodontically treated tooth that fail to eliminate a periapical lesion. Surgical intervention is usually considered in cases with infection remaining in inaccessible apical areas and extra radicular infection with bacteria present in dentinal tubules.11 This surgery is usually directed at achieving a complete excavation of the periapical lesion and seldom directed at achieving a complete regeneration of the bony cavity that is left as a void.12 Such bony cavities usually get filled by bone but their chance of natural healing is very less. Guided bone regeneration aiding the use of bone graft, Platelet Rich Fibrin and barrier membranes can be effectively used in such surgeries especially in long standing chronic lesions to achieve a complete bone fill in the cavities.11,12 When bone graft provide needed scaffold for bone regeneration, PRF provide growth factors and the barrier membrane prevent the soft tissue growth into the defect.

Many times, bone grafting procedure becomes expensive if graft material alone is used in big defects and hence usage of PRF would help in reducing the cost of the procedure. The use of bone graft, Platelet Rich Fibrin and barrier membranes can be effectively used in such surgeries especially in long standing chronic lesions to achieve a complete bone fill in the cavities. A case series of such a few cases are discussed here to bring into light the application of such a technique that take into consideration the wider application of periodontal regenerative techniques.

CONFLICT OF INTEREST: None declared

SOURCE OF SUPPORT: Nil

Address for Correspondence:
Leakshmy S, Department of Clinical Periodontology and Oral Implantology, Royal Dental College, Palakkad, Kerala 679536, India.

E-mail: lekshmy834@gmail.com

Date of Submission: 4-08-2016
Date of acceptance: 22-08-2016

 ligament.
bone graft material required for filling the bony cavity. Few cases of successful application of bone graft, PRF and barrier membrane in apicoectomy surgery is presented here to highlight its importance in eliminating periapical lesion and achieving a perfect bony fill of the lesion and render support to tooth in its periapical region.

CASE REPORTS
In case series 1, a 37 year old female patient reported with a complaint of pain and swelling in the region of upper right anterior teeth. She presented a history of endodontic treatment done 5 yrs ago. She was indicated for apicoectomy surgery and she was undertaken for surgery with bone grafts, PRF and barrier membrane. The sutures was removed 10 days post operatively and X ray review was done at the end of 6 month. The case reported promising result with complete bone regeneration at the apex. Similar four more cases are explained as Case series 2-5.

Fig: 1 series : Preoperative clinical view (A), Radiographic view (B), Intra op lesion view (C), PRF (D), Lesion filled with bone graft material (Osseograft ™) mixed with PRF (E), Barrier membrane in place (F), Sutures securing the lesion (G), Post Op radiograph at 6th month (H)

DISCUSSION
The predictability and success rate of regenerative techniques have secured their place as a standard treatment modality in the field of Oral surgery and Periodontics. From the above mentioned 5 case series, the placement of a barrier membrane supported by a underlying bone graft and PRF have resulted in considerable amount of bone fill in periapical areas of endodontically treated teeth which failed to create bone regeneration at its apex. Various studies have demonstrated promising results and have thus opened up a wider platform for applying this combination technique in regeneration of bone around dental implant endodontic lesions as well as for socket preservations following extractions.

CONCLUSION
Based on these case reports and similar cases in literature, the usage of bone graft material mixed with PRF and secured with barrier membrane can be considered a reliable technique in achieving a complete heal of periapical bony defects. PRF being mixed with bone grafts helps in reducing the larger need of particulate bone graft material and thereby reducing the huge cost involved in the surgery. However the reason for not achieving a complete bone fill in all cases of such defects even after the usage of these predictable materials and technique still remains an unanswered question.

REFERENCE
REVIEW – SHORT COMMUNICATION

3D-printed scaffold – future of periodontal tissue engineering

Nikhil Das C, Deepa A G, Elizabeth Koshi, Arun Sadasivan

INTRODUCTION

The search for an ideal filler material for periodontal regeneration has resulted in the development of different bone grafts. As these materials had limited success, the quest for a more effective regenerative technique resulted in the development of the concept of tissue engineering. This approach consists of a triad of elements like the signalling molecules; scaffold or supporting matrices; and cells. Bone tissue engineering (BTE) is the specific branch of medicine that involves both soft and hard tissues, the design and balance between the biomaterials and scaffolds becomes more complicated. Hence, “compartmentalization” is necessary for controlling the spatiotemporal events to effect successful regeneration of the periodontal complex. The compartmentalization of tissue can be facilitated by means of an advanced scaffold design known as multiphasic scaffold.

MULTIPHASIC SCAFFOLDS

A multiphasic scaffold can be defined by the variation within the architecture and the chemical composition of the resulting construct, which usually recapitulates to some extent the structural organization or the cellular and biochemical composition of the native tissue. One of the most significant challenges in periodontal regeneration is the inability to achieve functional integration of soft and hard tissues with each other and with the host. The basic principle behind multiphasic scaffold is to create a biomimetic architecture which establishes the critical structure-function relationship inherent to the native tissues. These fabricated constructs accurately duplicate the anatomy of the defect area to aid cell delivery and timely neovascularization while maintaining space for subsequent tissue regeneration. These customized constructs have the provision for 3-dimensional conditions and a porous interconnected network that direct cell attachment, migration and PDL fiber orientation. Recently, computational scaffold designing (3D printing) has been used in the construction of novel scaffold systems especially in dentin-ligament-bone complex.

MULTIPHASIC SCAFFOLDS

A multiphasic scaffold can be defined by the variation within the architecture and the chemical composition of the resulting construct, which usually recapitulates to some extent the structural organization or the cellular and biochemical composition of the native tissue. One of the most significant challenges in periodontal regeneration is the inability to achieve functional integration of soft and hard tissues with each other and with the host. The basic principle behind multiphasic scaffold is to create a biomimetic architecture which establishes the critical structure-function relationship inherent to the native tissues. These fabricated constructs accurately duplicate the anatomy of the defect area to aid cell delivery and timely neovascularization while maintaining space for subsequent tissue regeneration. These customized constructs have the provision for 3-dimensional conditions and a porous interconnected network that direct cell attachment, migration and PDL fiber orientation. Recently, computational scaffold designing (3D printing) has been used in the construction of novel scaffold systems especially in dentin-ligament-bone complex.

How to cite this article: Log on to jcops.copsonweb.org. Nikhil Das C, Deepa A G, Elizabeth Koshi, Arun Sadasivan. 3D-printed scaffold – future of periodontal tissue engineering. Journal of Cochin Periodontists Society 2016;1:140-143

Conflict of Interest: None declared

Source of Support: Nil

References

<table>
<thead>
<tr>
<th>References</th>
<th>Study type</th>
<th>3D scaffold used</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park et al. [10] 2010</td>
<td>In vivo, nude mice</td>
<td>A porous polylactic acid (PLA) structure is created by 3D wax printing and seeded with human periodontal ligament cells (hPDL)</td>
<td>Newly formed tissue demonstrated the interfacial generation of parallel and obliquely oriented fibers that formed human tooth dentin-ligament-bone complex.</td>
</tr>
<tr>
<td>Park et al. [9] 2012</td>
<td>In vivo, athymic rats</td>
<td>A PCL scaffold is created by 3D wax printing and seeded with hPDL cells / hPDL cells transfused with Ad-BMP-7</td>
<td>The use of fiber guiding hybrid scaffold system resulted in triphasic tissue regeneration.</td>
</tr>
<tr>
<td>Lee et al. [7] 2014</td>
<td>In vivo, mice</td>
<td>Fused deposition modelling is used for fabricating a triphasic scaffold made of PCL/hydroxyapatite. The construct is compartmentalized by creating microchannels of varying diameters of three phases (100, 600 and 300 μm for cementum, PDL and bone, respectively). PGA microspheres loaded with biological cues like amelogenin, connective tissue growth factor and BMP-2 are added into different compartments, which further aid in the differentiation. Dental pulp stem cells are also seeded into the construct with type-I collagen gel.</td>
<td>A single stem cell population differentiated into respective periodontal tissue compartments by using the construct's biophysical characteristics, combined with the spatially delivered bioactive cues.</td>
</tr>
</tbody>
</table>

Access this article online: jcops.copsonweb.org

Table 1: Studies utilizing 3D printed scaffold for periodontal tissue engineering

Nikhil, et al.: 3D-Printed scaffold

Address for Correspondence:
Nikhil Das C, Assistant professor, Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kovalam, Kollam, Kerala, India.
E-mail: drnikhildas@hotmail.com
Department of Oral Pathology & Microbiology, Sree Mookambika Institute of Dental Sciences, Kulasekaram, Tamil Nadu, India.
Date of Submission: 4-08-2016
Date of acceptance: 22-08-2016
introduced for the production of the multicompartamental scaffold.

3D PRINTED SCAFFOLDS

3D printing technologies offer a promising platform for periodontal tissue regeneration, which provides customization to match the periodontal defect shape, size and topography. Conventional techniques utilized in 3D fabrication of scaffold are gas foaming, freeze drying, particle leaching, melt molding, phase separation, and fiber bonding.\(^\text{[8]}\) But disadvantages like inconsistency in porosity, configuration and interconnectivity made the researchers to focus on more precise technologies.\(^\text{[9]}\)

Some of these newly introduced 3D printing technologies are solid freeform fabrication (SFF), inkjet printing, selective laser sintering (SLS), stereolithography (STL), and extrusion printing (e.g., fused deposition modelling-FDM).\(^\text{[10]}\)

3D PRINTED SCAFFOLD FABRICATION

Good quality images of the periodontal defect are generated with the help of computed tomography scanning after which a 3D model of the site created using CAD program. The 3D generated image will be converted into a stereolithography (STL) format to produce the custom-fit substitute for the defect. STL is a technique that converts CAD design into a solid object (bone borders and PDL interface) by means of a combination of laser photochemistry and software technology. After capturing the periodontal defect image dataset, the exterior borders of the bone region and PDL interface will then be created using periodontal defect topography in the STL surface image. Designed architectures were then subtracted from STL- formatted, 3-D surface topological defect to generate an anatomically fit scaffold (e.g: Magics 15, Materialise NV). The final designed scaffold is then assessed for adaptation to the defect with the help of computed tomography in a 3D prototyped model.

3D PRINTED SCAFFOLD IN PERIODONTAL REGENERATION

Applications of 3D printed scaffolds have been recently studied in various periodontal applications. Studies utilizing 3D printed scaffold for periodontal tissue engineering are summarized in Table 1.

LIMITATIONS AND FUTURE DIRECTIONS

Main limitations of these multicompartamental scaffolds include increased stiffness, which make it difficult to precisely adapt to the defect configuration, slower scaffold resorption profile that may impede bone regeneration, lack of clarity in perpendicular periodontal fiber formation and its insertion into the newly formed cementum, technique sensitivity and cost effectiveness.

Periodontal literature on 3D printed scaffolds and related biomaterials are limited. So long term multicenter-randomized clinical trials with adequate number of patients are needed to validate the clinical use of these scaffolds. Future researches should focus on developing thinner, easily adaptable and faster degrading scaffold.

CONCLUSION

The concept of multiphasic constructs for periodontal tissue engineering is in the preliminary stages of development. Translation of the favourable preclinical results into clinical realities may be a major breakthrough in the field of regenerative periodontal therapy.

REFERENCES

A brief insight on salivaomics

Deepthy M, Nandakumar K, Padmakumar T P, Raju Kurien Ninan, Devisree Naveen, Teenu Abraham

ABSTRACT:
Human saliva reflects the physiologic state of both oral cavity and our body. Salivary diagnostics is an attractive and emerging field in the diagnosis of oral and systemic diseases. Saliva is considered as an attractive diagnostic fluid as it is easy to handle compared to serum and urine. Salivacommits biomolecules such as DNA, mRNA, microRNA, protein, metabolites and microbiota. These biomolecules differ in healthy and diseased states. Salivaomics is a diagnostic platform to monitor the changes in these biomolecules and help to identify diseases at an early stage. This article provides a brief insight into the omics-based approach of salivary diagnostics.

KEYWORDS: Saliva, genome, proteome, metabolome, microbiome

INTRODUCTION
The definitive diagnosis of a disease is conventionally procured by laboratory investigations in supplementary to clinical examination. Earlier detection and diagnosis of a disease is important to deliver appropriate treatment, which can reduce the severity of the disease for the patient.[]

For this, diagnostic tests with high specificity and sensitivity are needed. Biomarkers represent an excellent choice. But, definitive biomarkers for diseases are usually absent. There is also a lack of an accurate portable easy to use diagnostic platform.

Saliva, abortifluid contains secretions of the salivary glands (major and minor), oral mucosa cells, blood and gingival crevicular fluid (GCF). Saliva, similar to blood and serum, contains biomolecules such as DNA, mRNA, microRNA, protein, metabolites and microbiota. A wide range of molecular components in saliva can be measured and monitored and can be compared with serum components. This has made it feasible to study microbes, chemicals and immunological markers in saliva.[]

Thus saliva can reflect oral and systemic health status. The main advantage is that it is easy to obtain, non invasive and does not cause discomfort during collection. Also saliva is easier to handle for diagnostic procedures as it does not clot.

SALIVAOMICS
The term salivaomics was coined in 2008 to reflect on various omics constituents of saliva. It includes genome, epigenome, transcriptome, proteome, metabolome and microbiome.[] The main aim is to identify the changes in concentrations of these biomolecules. This helps to identify systemic diseases early, evaluate the prognosis and risk and monitor the response to the treatment.

KEYWORDS: Saliva, genome, proteome, metabolome, microbiome

THE COMPONENTS OF SALIVAOMICS

Genome and Epigenome

Genomics refers to the study of all the DNA of a single organism. The analysis of whole DNA profiles can reflect abnormal pathological genetic processes. Epigenetic processes occur due to environmental exposure of the genome. Studies have proven that these epigenetic factors differ in patterns in diseased and normal individuals.[] The quality and yield of DNA obtained from saliva is relatively good compared to blood and urine. Saliva DNA can diagnose the presence or absence of certain genes, but cannot provide information about up-regulation and down-regulation of gene expression.

Transcriptome

It includes mRNA and microRNA. These are secreted from cells and enters the oral cavity from salivary glands, GCF, and desquamated oral epithelial cells.[] The transcription of specific mRNA and microRNA are altered in disease conditions. There is normal 185 core mRNAs in all normal subjects. High density oligonucleotide microarrays were used to profile salivary mRNAs and revealed 3000 mRNAs.[1]

The human salivary transcriptomewas first discovered at UCLA using microarray technology, allowing high throughput analysis. Zhang et al discovered that four mRNA biomarkers can differentiate patients with early stage resectable pancreatic cancer from non-cancer subjects with high specificity and sensitivity.[1]

It can be used to detect oral cancer, ovarian cancer, lung cancer, breast cancer, and other systemic diseases.

Micro RNAs are group of small non coding RNAs that are encoded by genes but not translated to proteins. Studies have shown that micro RNAs are deregulated in cancer subjects compared with healthy subjects. Micro RNAs are more stable compared to mRNAs.[2]

Proteome

Proteomics refers to the study of all proteins. Saliva contains more than 2000 proteins which help to maintain homeostasis. Salivary proteins degrade faster compared to that in serum. At UCLA, protease inhibitors are used to stabilize saliva which keep it stable for two weeks (when stored at 4°C).[3]

Mass spectrometry core technology is used to measure peptides. Two dimensional difference gel electrophoresis combined with mass spectrometry is used for proteomic analysis. This analysis is helpful to determine Sjogren syndrome, lung cancer etc.[] Chronic periodontis, oral cancer, and tongue cancer show differential expression of proteins.

Metabolome

This enables the assessment and validation of endogenous small molecular metabolites with in a biological system that has gained increasing popularity and has significance in life sciences.[] Analysis of these key metabolites is important to monitor the state of biological organisms. These metabolites can discriminate disease from the healthy subjects. Specific metabolites are elevated in oral cancer, pancreatic cancer, breast cancer, and periodontal disease.[5] This analysis is done using capillary electrophoresis time of flight mass spectrometry.

Microbiome

Oral cavity harbors nearly 10000 species of bacteria. The next generation sequencing helps to identify the association between specific bacteria or other microbes and specific oral or systemic diseases.[6]

Studies have found difference in oral microbiota in patients with pancreatic cancer and squamous cell carcinoma compared with healthy subjects.[7]
MECHANISMS OF SALIVARY DIAGNOSTICS

Studies have shown that some salivary biomarkers might have been derived from systemic sources. Gao et al in mouse models analyzed nerve growth factor and transcription factor production in tumour tissue which can alter the transcriptome of salivary glands and saliva. This helps to identify systemic networks in the human body, which allow communication between distal diseases and salivary glands. Signal transmitted through such networks might induce related signal pathways that result in altered gene expression and protein translation, and thereby produce disease induced salivary biomarker profiles. The research team at UCLA developed Salivaomics Knowledge Database (SKB), a data management system and web resource that supports salivary diagnostics research to overcome the inability to cross reference data sets from different types of studies. SKB includes SALO(Saliva Oncology) and SDxMart. SALO includes the detailed structure of a rich database of saliva related studies. SKB includes SALO(Saliva Oncology) and SDxMart. SDxMart is a biomart data portal that hosts diagnostic community and the cross disciplinary community of oncology of saliva which can meet the needs of both the clinical and research communities. SDxMart is a biomart data portal that hosts diagnostic community and the cross disciplinary community of oncology of saliva which can meet the needs of both the clinical and research communities.

CONCLUSION

Saliva as a biofluid can accurately denote the presence of a disease, and can be collected in a non-invasive manner. Salivary biomarker evaluation can reflect the overall systemic status of an individual which help to develop personalized medicine concepts.

DIAGNOSTIC KITS BASED ON SALIVARY OMICS

<table>
<thead>
<tr>
<th>Product (Company Details)</th>
<th>Condition</th>
<th>Analyte</th>
<th>Principle</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand Germine Cancer Test</td>
<td>Cancer risk assessment</td>
<td>DNA</td>
<td>Targets entire coding regions of the BRCA1,BRCA2, and TP53 genes for breast and ovarian cancer predisposition</td>
<td>http://sapienbio.com/speciality/genomic panels/</td>
</tr>
<tr>
<td>Oral Fluid NanoSensor Test (OFNASET)</td>
<td>Determination of various diseases</td>
<td>Nucleic acid and protein</td>
<td>Polymer microchip orificed electrodes Electrode induced deposition</td>
<td>http://hopp.dent.ucla.edu/about.html</td>
</tr>
<tr>
<td>OraQuick</td>
<td>Screening and risk assessment test for HIV</td>
<td>Protein</td>
<td>Detects antibodies to HIV-1 and HIV-2</td>
<td>http://www.orasure.com/products-infections-oraquick.asp</td>
</tr>
<tr>
<td>Salimark™OC (PeriRxLLC)</td>
<td>Oral cancer risk assessment</td>
<td>Certain discrete biomarkers and protein</td>
<td>Elevation of combinations of biomarkers which are consistent with an increased risk of oral cancer</td>
<td>http://perine.com/products/oralcancer-salivary-diagnostic test/</td>
</tr>
<tr>
<td>My periopath</td>
<td>Periodontal disease</td>
<td>Bacteria</td>
<td>Identifies the type and concentration of specific periodontal pathogenic bacteria that are known to cause periodontal diseases</td>
<td>http://www.oralna.com/resources/myperiopathsheet.pdf</td>
</tr>
</tbody>
</table>

REFERENCES:

Correlation of implant protective occlusion with implant failures

Ranjith Kumar P, Rohit Raghavan, Jishnu S

ABSTRACT: It is believed that dental implants may be more prone to occlusal overloading, which is often regarded as one of the potential causes for peri-implant bone loss and failure of the implant/implant prosthesis. Implant-protective occlusion can be accomplished by increasing the surface area of implants, decreasing the width of the occlusal table, improving the force direction, and reducing the magnification of the force. By doing these things, we can minimize overloading on bone-implant interfaces and implant prostheses, to maintain an implant load within the physiological limits of individualized occlusion, and ultimately provide long-term stability of implants and implant prostheses.

Key words: Implant protective occlusion, implant prosthesis

INTRODUCTION
Endosseous dental implants have successfully been used during the last few decades as a treatment modality for the replacement of missing teeth in partially or completely edentulous patients. The clinical success and longevity of endosseous implants are largely controlled by the mechanical setting they function in. Implant treatment has a high success rate that has been rated as high as 95 to 99%, despite high success rate with endosseous titanium implants, failures unavoidably occur. Optimal oral hygiene and proper occlusion are considered critical for long-term success of endosseous oral implants. Most of the complications like porcelain fracture, unrestrained prosthesis, screw loosening, bone loss etc occur due to faulty occlusion. Due to lack of the periodontal ligament, osseointegrated implants, unlike natural teeth, react biomechanically in a different fashion to occlusal force. It is therefore believed that dental implants may be more prone to occlusal overloading, which is often regarded as one of the potential causes for peri-implant bone loss and failure of the implant/implant prosthesis. Overloading factors that may negatively influence on implant longevity include large cantilevers, parafunctions, improper occlusal designs, and premature contacts. Hence, it is important to control implant occlusion within physiologic limit and thus provide optimal implant load to ensure a long-term implant success.

Occlusal overload can cause mechanical complications on dental implants and implant prostheses such as screw loosening and/or fracture, prosthesis fracture, and implant fracture, eventually leading to compromised implant longevity. The crestal bone around dental implants may act as a fulcrum point for lever action when a force (bending moment) is applied, indicating that peri-implant tissues could be more susceptible to crestal bone loss by applying force. It is essential for clinicians to understand inherent differences between teeth and implants and how force, either normal or excessive force, may influence on implants under occlusal loading.

Differences between teeth and implants
The presence of a periodontal membrane around natural teeth significantly reduces the amount of stress transmitted to the bone, especially at the crestal region. The force transmission is so complete that a thin layer of cortical-like bone (corticalis plate) forms around the tooth. When the tooth is lost, the cortical plate lining disappears, showing that this is a result of ideal strain interface to the bone. Compared with a tooth, the direct bone interface with an implant is not as resilient, so the energy imparted by an occlusal force is not dissipated partially (the displacement of the periodontal membrane dissipates energy) but rather transmits a higher intensity force to the contiguous bone. The mobility of a natural tooth can increase with occlusal trauma. This movement dissipates stresses and strains. The tooth then returns to normal position once the trauma is eliminated.

Mobility of an implant also can develop under occlusal trauma. However, after the offending element is eliminated, an implant rarely returns to its original rigid condition. The width of almost every natural tooth is greater than the width of the implant used to replace the tooth. The greater the width of a transosteal structure (tooth or implant), the lesser the magnitude of stress transmitted to the surrounding bone. The cross-sectional shape of the natural tooth at the crest is biomechanically optimized to resist lateral (buccolingual) force.

Conflict of Interest: None declared
Source of Support: Nil

Tooth versus implant biomechanics

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Implant</th>
</tr>
</thead>
</table>
| 1. Periodontal membrane
a. Shock absorber
b. Longer force duration
c. Distribution of force around tooth
d. Tooth mobility can be related to force
e. Mobility dissipates lateral force
f. Fremitus related to force
g. Radiographic changes related to force reversible |
| 2. Biomechanical design
a. Elastic modulus similar to bone
b. Diameter related to force magnitude |
| 3. Sensory nerve complex in around tooth
a. Occlusal trauma induces hyperaemia and leads to cold sensitivity
b. Propioception (reduced max. Bite force)
c. Less bite functional force |
| 4. Occlusal material: enamel
a. Enamel wear, stress lines, abfraction and pits. |
| 5. Surrounding bone- cortical
a. Resistant to change |
| 1. Direct bone-implant
a. Higher impact force
b. Short force duration
c. Force primarily to crest
d. Implant is always rigid
e. Lateral force increases strain to bone
f. No fremitus
g. Radiographic changes at crest/ bone loss is non reversible |
| 2. Implant design
a. Round cross section and designed for surgery
b. Elastic modulus 5 to 10 times that of cortical bone
c. Diameter related to existing bone. |
| 3. No sensory nerves
a. Occlusal trauma induces hyperaemia and leads to cold sensitivity
b. Occlusal awareness of to two to five times less
c. Functional bite force four times higher |
| 4. Occlusal material/porcelain(metal crown)
a. No early signs of force |
| 5. Surrounding bone is trabecular
a. Conductive to change |
loads because of the bending fracture resistance (moment of inertia) of the tooth and the direction of occlusal forces. After ossointegration, mechanical stresses and strains beyond the physical limits of hard tissue have been suggested as the primary cause of both initial and long-term bone loss around implants. If the occlusal overload is not corrected, crestal bone loss will continue until the implant fails. Occlusal overload is often regarded as one of the main causes for peri-implant bone loss and implant prosthesis failure, because it can cause crestal bone loss, thus increasing the anatomic sulcus depth and peri-implant disease states if patients oral hygiene status is poor.

Differences in the magnitude, duration, direction, and frequency of the applied occlusal load and the tolerance threshold of the host are the underlying reasons for the conflicting observations obtained through the clinical studies on occlusal overload. Possible mechanisms of why occlusal overload can lead to peri-implantitis are conceivable. Implants are considered less tolerable to non-axial occlusal load compared to teeth because of a lack of a periodontal ligament. Finite element studies have suggested that the occlusal load is concentrated at the implant marginal bone. Bone remodeling in response to the strain. Excessive stress can cause microfracture within bone and eventual bone loss.

Consequences of biomechanical overload

1. Porcelain fracture
2. Prosthesis fracture
3. Uncemented or unretained restoration
4. Screw loosening
5. Early crestal bone loss
6. Intermediate to late implant failure
7. Peri implant disease
8. Component fracture

Principles of implant protective occlusion

1. No premature occlusal contact: During maximum intercuspation, no occlusal contact should be premature. Occlusal prematurity between maximum intercuspation and centric relation occlusion should be taken into consideration especially on implant supported prostheses. This is because, non-mobile implants bear the entire load of the prosthesis when intercuspation, no occlusal contact should be premature. Hence during non-mobile implants bear the entire load of the prosthesis when intercuspation, no occlusal contact should be premature. Forces distributed over 3 abutments results in less stress on the crestal bone compared to 2 abutments.

2. Mutually protected articulation: When the natural canines are present, during excursions it allows the teeth to distribute horizontal load and also the posterior tooth to disocclude. This concept is known as canine guidance or mutually protected articulation. However, there should be no contact on the implant crown during excursion to the opposing side and also during protrusion. The anterior guidance of implant prosthesis with anterior implant should be shallow. This is because, the steeper the incisal guidance the greater the force on the anterior implant. Weinberg et al have reported a study stating, every 10° degree change in the angle of disclusion, there is a 30 % difference in the load.4

4. Cusp angle of crown: Natural dentition has steep cuspal inclination whereas in denture teeth, the cuspal inclination given is 30 %. Cusp inclination has been found to produce a high level of torque 5,6. For every 10° increase in cusp inclination, there is an approximately 30% increase in torque. Weinberg et al in 1995 have reported a study regarding the torque of a gold screw, abutment screw, and implant. They have concluded that, the cuspal inclination produces the most torque, followed by maxillary horizontal implant offset, while implant inclination and apical implant offset produce minimal torque. Occlusal contact over an implant crown should be on a flat surface perpendicular to implant body. This is achieved by increasing 2 to 3mm of the width of the central groove in the posterior implant crowns and the opposing cusp is recontoured to occlude the central fossa directly over the implant body.

5. Implant body angle to occlusal load: There can be different impact on the bone and implant interface based on the direction of the load applied even if it’s of same magnitude of force, however implant is mainly designed for long axis load. A study was reported by Bhide et al in 1970, where 30 endosteal implant designs were assessed and found that all the design sustained lesser under a long axis load. The greater the angle of load to the implant long axis, the greater the compressive, tensile and shear stresses which leads to bone loss and unsuccessful bone re growth.

6. Crown height: Implant crown height is often greater than the natural anatomical crown. As the implant crown height becomes greater, the crestal moment with any lateral component of force also becomes greater. Therefore any harmful effect of any feebly selected cusp angle, angled implant body, or angled load to the crown will be magnified by the crown height measurements.

7. Cantilever: Cantilevers with unfavourable crown or implant ratio, increase the amount of stress to the implant. These can further lead to peri-implant bone loss and prosthesis failure. The magnitude of load obtained by the implants is approximately proportional to the length of the cantilevers but it also varies with the implant number, spacing, and location. Long cantilevers are correlated with increase crestal bone lost.

8. Occlusal contact position: Occlusal contact position determines the direction of force especially during parafunctional activity. In different theories, the number of occlusal contact varies. Occlusal theory by Peter K Thomas suggest that there should be tripod contact on each occluding cusps, on each marginal ridge and central fossa with 18 and 15 individual occlusal contacts on a mandibular and maxillary molars whereas, the other occlusal contact scheme indicates that, number of occlusal contact for molars can be reduced.

9. Implant crown contour: In maxilla, the edentulous ridge resorbs gradually in the mediolateral direction whereas in posterior mandibular, the resorption occurs in lingual direction. Center of implant is placed in the center of the edentulous ridge because the ridge resorbs lingually with resorption hence the implant is mostly not kept under the buccal cusp tip but near the central fossa or more lingually, under the lingual cusp of the natural tooth. The size of the implant body which is the buccolingual dimension is smaller than the natural tooth.

10. Occlusal material: Occlusal material fracture is one of the most common complications of implant restoration therefore consideration of the occlusal material restoration is very essential for each patient. Occlusal material may be evaluated by esthetic, impact force, static load, chewing efficiency, fracture, wear, inter arch space requirement, and accuracy of casting.

CONCLUSION

The objectives of implant occlusion are to minimize overload on the bone–implant interface and implant prosthesis, to maintain implant load within the physiological limits of individualized occlusion, and finally to provide long-term stability of implants and implant prostheses. To accomplish these objectives, increased support area, improved force direction, and reduced force magnifications are indispensable factors in implant occlusion.

REFERENCES

ABSTRACT:

Pain and its successful management have been one of the cornerstones of Dentistry worldwide since time immemorial. Although local anesthesia remains the backbone of pain control in dentistry, researches are going on to seek new and better means of managing the pain. It is imperative on our part to update our knowledge and skills in using newer alternatives in pain control and management and ways of administering them. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and techniques involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control compared with the earlier used ones on the basis of research and clinical studies available.

Keywords: Local anesthesia, CCLAD, intra-osseous anesthesia

INTRODUCTION

The most important skill required of all dental practitioners is the ability to provide safe and effective local anesthesia (LA). The injection of local anesthetic is perhaps the greatest source of patient fear and inability to obtain adequate pain control with minimal discomfort remains a significant concern of dental practitioners. Over the years, many futile attempts have been made to provide clinically adequate pain control without the need for injection of drugs. The agents and anesthetic delivery equipments available today provide the practitioner an array of options to effectively manage the pain associated with dental procedures. This review focuses on the most recent developments in dental LA techniques and devices.

EMLA

Eutectic mixture of lignocaine and prilocaine bases, which forms an oil phase in the cream and passes through the intact skin. Clarke et al suggested the use of EMLA cream for anesthetizing the skin prior to needle insertion as this reduces the incidence of injection pain. The DENTIPATCH containing 10-20% lidocaine, which is placed on dried mucosa for 15 minutes. Hersh et al studied the efficacy of this patch and recommended it for use in achieving topical anesthesia for injections in both maxilla and mandible. It is not recommended in children. Disadvantages include central nervous system and cardiovascular system complications.

ELECTRONIC DENTAL ANESTHESIA (EDA)

This technique is based on transcutaneous electronic nerve stimulation (TENS), where electronic waves are used to disrupt neural pain transmission to brain. It can be used a supplement to conventional local anesthesia. Some limitations of this technique are increased salivary flow and inability to use metal instruments freely. It is contraindicated in several conditions such as heart disease, seizures, neurological disorders, brain tumors, patients wearing pacemakers and cochlear implants.

JET INJECTORS

Jet-injection technology is based on the principle of using a mechanical energy source to create a release of pressure sufficient to push a dose of liquid medication through a very small orifice, creating a thin column of fluid with enough force so that it can penetrate soft tissue into the subcutaneous tissue without a needle. Jet injectors are believed to offer advantages over traditional needle injectors by being fast and easy to use, with little or no pain, less tissue damage, and faster drug absorption at the injection site. Controlled studies evaluating efficacy are lacking, and reports are primarily anecdotal. To date, the effectiveness of the technique in dentistry has been reported to be limited.

COMPUTER-CONTROLLED LOCAL ANESTHETIC DELIVERY SYSTEMS

In the mid-1990s, work began on the development of local anesthetic delivery systems that incorporated computer technology to control the rate of flow of the anesthetic solution through the needle. This concept is now called computer-controlled local anesthetic delivery (CCLAD). The first of these CCLAD devices, the Wand™ (Milestone Scientific, Inc., Livingston, N.J.), was introduced in 1997. Subsequent versions from same manufacturers were named Wand Plus and Compudent™, the current designation. In 2001, the Comfort Control Syringe (Dentply International, York, PA, USA) was marketed as an alternative to the Wand. Examples of similar products include the QuickSleeper and SleeperOne devices (Dental Hi Tec, Chole, France) Aneaject (Nippon Shika Yakuhin, Shimosoneki, Japan) and Ora Star (Showa Uoyukihin Kako, Tokyo, Japan) syringes.

WAND/COMPUDENT SYSTEM

This system enables the operator to accurately manipulate needle placement with fingertip accuracy and deliver the LA with a foot-activated control. The lightweight handpiece is held in a pen-like grasp that provides the user with greater tactile sensation and control, compared to a traditional syringe. The available flow rates of LA delivery are controlled by a computer and thus remain consistent from one injection to the next. The greater control over the syringe and the fixed flow rates of the LA drug are responsible for a significantly improved injection experience, as demonstrated in many clinical studies conducted with CCLAD devices in dentistry. A growing number of clinical trials in medicine also demonstrate measurable benefits of CCLAD technology.

COMFORT CONTROL SYRINGE

The Comfort Control Syringe differs from the Milestone products in that there is no foot pedal. It has two main components: a base unit and a syringe. Several functions of the unit, most importantly injection and aspiration, can be controlled directly from the syringe, possibly making its use easier to master for practitioners accustomed to the traditional manual syringe. The Comfort Control Syringe has five pre-programmed speeds for different injection techniques and can be used for all injection techniques. Although, use of the Comfort Control Syringe may be more perceptive than that of the Compudent system in the sense that the injection is controlled by hand, the syringe is bulky and more cumbersome to use than the Wand handpiece. A comparison between the traditional dental syringe and the Comfort Control Syringe revealed no meaningful differences in ease of administration, injection pain and efficacy, and acceptance by patients.

SINGLE-TOOTH ANESTHESIA (STA)

In 2006, the manufacturers of the original CCLAD, the Wand, introduced a new device, Single Tooth Anesthesia (STA™) which incorporates dynamic pressure-sensing (DPS) technology that provides a constant monitoring of the exit pressure of the local anesthetic solution in real time during all phases of the drug’s administration. STA with DPS technology can be used to give Palatal Anterior Superior Alveolar, Anterior and Middle Superior Alveolar, Periodontal Ligament injections. It overcomes the problems associated with the traditional PDL injections. The system can be utilized for all traditional intraoral injection techniques. The DPS system provides confirmation (in audible tones, visual displays and spoken alerts) that the needle tip is in the desired location and has not moved outside this area during drug administration. DPS alerts the user if leakage of LA occurs (a common problem.
when traditional syringes are used for the PDL). Since the pressure of the LA is strictly regulated by the STA system, a greater volume of LA can be administered with increased comfort and less tissue damage than seen with traditional syringes or PDL pressure devices.15 It has 3 modes for rate of injection: STA mode, normal mode and turbo mode.

INTRA-OSSEOUS ANESTHESIA SYSTEMS [IO-SYSTEMS]

Aim of intra-osseous anesthesia is to inject local anesthesia solution into cancellous bone adjacent to the apex of the tooth by piercing buccal gingiva and bone in relation to the tooth to be anesthetized. It can be used as a supplemental technique with mandibular nerve blocks to enhance deep pulpal anesthesia or as a primary technique so that patients do not experience numb lips or tongues postoperatively. Systems include Stabident, X-Tip and IntraFlow. Stabident, an intra-osseous injection delivery system has a disadvantage that it can be used only in visible and readily accessible areas because while giving intraoral injection, once the perforator is withdrawn, it can be extremely difficult to locate the perforation site with the anesthetic needle. To overcome this, X-Tip uses the pilot drill which is a hollow tube through which a 27-gauge needle can pass. The initial drill stays in place, allowing the anesthetic to be placed without hunting for the hole that was just created. The above two systems use a two-step method. IntraFlow anesthesia system further eases the IO injection by using a single-step method which allows entry into the penetration zone, injection, and withdrawal in one continuous step, without the need to relocate the perforation site. Reemers et al reported that the IntraFlow system as a primary technique provides reliable anesthesia of posterior mandibular teeth in 13 of 15 subjects, compared to 9 of 15 area between the electrodes of TENs while generated impulses are continuing at the same level. After withdrawing the insertion and removing the needle, pulses are slowly reduced and stopped.22

CONCLUSION

Many newer delivery systems for local anesthesia have evolved and the dental practitioners must be well aware of their usage and applications. The required armamentarium may be chosen according to the patient’s needs. Dentists must be well aware of these newer delivery systems, their usage and must have an up-to-date knowledge, so as to provide the benefits of latest technology to their patients. The ability to deliver painless injections and a desirable level and duration of anesthesia results in reduced patient fear, reduced patient stress and therefore reduced stress for the clinician and can aid patient compliance with dental treatment.

REFERENCES

8. Malamed SF. Handbook of local anesthesia: Elsevier Health Sciences; 2013
Biologic width: the Prosthodontic perspective

Shajahan P A, Rohit Raghavan, Monisha V S

ABSTRACT:

The first and most basic objective of restorative dentistry is preservation of the tooth structure. However, for the long-term survival of restoration, the periodontium must also remain healthy or vice versa. An adequate understanding of the relationship between periodontal tissues and restorative dentistry is paramount to ensure adequate form, function, esthetics, and comfort of the dentition. While most clinicians are aware of this important relationship, uncertainty remains regarding specific concepts such as the biologic width and indications and applications for surgical crown lengthening. This review discusses the concept of the biologic width and its relationship to periodontal health and restorative dentistry. The importance of restorative margin location, materials, and contours related to periodontal health is also addressed.

Key words: Biologic width, periodontium, restoration, esthetics, subgingival margins, tissue damage

[Access this article online](https://jcpops.copusw.org/
Quick Response Code]

Conflic of Interest: None declared

Source of Support: Nil

INTRODUCTION

Dentistry of the modern era is dominated by restorative procedures that not only retain the functions of lost structures but also needs to retain the esthetics. Functional and esthetic restorations can gain complete patient’s and dentist’s satisfaction only when these restorations exist in harmonious relationship with the surrounding structures. Often dental practitioners come across to cases with chief complaints of a problematic or faulty restorations that appear to be normal to an untrained eye. Consistent complaint of the patient towards the inconvenience, makes the dentist to examine the regions with restorations and such cases are diagnosed as the restorations violating the biologic width.

BIOLOGICAL WIDTH

Biologic width is defined as the dimension of the soft tissue, which is attached to the portion of the tooth coronal to the crest of alveolar bone. Biologic width is the term applied to the dimensional width of dentogingival junction (epithelial attachment and underlying connective tissue). The concept of biologic width was initiated by Gargiulo et al in 1961. The term biologic width was coined by D Walter Cohen.

SIGNIFICANCE

The significance of biologic width is that, it acts as a barrier and prevents penetration of microorganisms into the periodontium. Maintenance of biologic width is essential to preserve the periodontal health and to remove any irritation that may damage the periodontium. It is said that a minimum of 3mm space between the restoration margin and the alveolar bone is required to permit adequate healing and to maintain a healthy periodontium. This 3 mm consists of 1mm of supragingival connective tissue, 1mm of junctional epithelium and 1mm of sulcular depth. This allows for adequate biologic width (2.04mm) even when the margins are placed 0.5mm within the sulcus. The location, fit and finish of restorative margins are critical factors in the maintenance of periodontal health.

CATEGORIES OF BIOLOGIC WIDTH

In order to operationally define biologic width, Kois suggested that the restorative dentist must determine the total distance from the gingival crest to the alveolar crest. This procedure is termed bone sounding. The Glossary of Periodontal terms describes sounding as the penetration of anesthetized soft tissue by a probe in order to determine the topography of the alveolar process.

The patient is anesthetized and the periodontal probe is placed in the sulcus and pushed through the attachment apparatus until the tip of the probe engages alveolar bone. The measurements are made on anterior teeth mid-facially and at the facial or interproximal line angles. If a patient having discomfort when restorative margin levels gingival margin area of involved tooth and gingival recession.

CORRECTION OF BIOLOGIC WIDTH VIOLATION

If a patient having discomfort when restorative margin levels gingival margin area of involved tooth and gingival recession, surgical correction is done by gingivectomy, apically repositioned flap with or without ostectomy. Orthodontic correction is done either by slow eruption or forced eruption with supracrestal fibrotenotomy. The mode of treatment is chosen based on the width of attached gingiva present, biologic width measurements as obtained from bone sounding, and esthetic requirements. The restoration margins can be grouped in any of the following three categories: - supragingival, equigingival, and subgingival.
Supragingival margin
It is the least irritating to the periodontium and is easy to prepare. The final fit and finish of the margins and removal of excess cement are also the easiest to achieve. Though this type of margin has the least impact to the periodontium, it is esthetic and preferred only in non-esthetic areas.

Equigingival margin
Equigingival margin can be easily blended with the tooth and can be finished easily to provide a smooth and polished margins. But such margins are not desirable as they are thought to favor more plaque accumulation and therefore result in greater gingival inflammation. There was also the concern that any minor or subgingival margins and therefore cause greater gingival inflammation. As they were thought to retain more plaque than supragingival margins. Conventional equigingival margins were not recommended as they are thought to favor more plaque accumulation and therefore result in greater gingival inflammation.

Subgingival margin
Though it is esthetic, it is detrimental to periodontal health as it acts as a permanent irritant to the periodontium. Many studies have demonstrated qualitative and quantitative changes in subgingival microbes, increased plaque index, gingival recession and pocket depth. Biologic width encroachment becomes more common when planning for subgingival restorations in cases that are fractured or carious, near the alveolar crest. Also esthetics demands often require hiding of restorative margins below the gingival margins i.e., pushing them down into the sulcus, which may cause biologic width violation.[7]

It is widely believed that the best biological place for a restorative margin is supragingival. Supragingival margins stay away from the periodontal tissues, and have the following advantages:• Preservation of tooth structure during tooth preparation. • Impressions are more predictable, with minimal or no cord packing. • Provisional restorations are easier to make, and the soft tissues will be healthier when the patient returns for cementation of the final restoration. • Removing excess cement is much easier when the margin is visible. Conventionally equigingival margins were not recommended as they were thought to retain more plaque than supragingival or subgingival margins and therefore cause greater gingival inflammation. There was also the concern that any minor gingival recession would create an unsightly margin display. These concerns are not valid today, not only because the restoration margins can be esthetically blended with the tooth but also because restorations can be finished easily to provide a smooth, polished interface at the gingival margin. From a periodontal viewpoint, both supragingival and equigingival margins are well tolerated. The greatest biologic risk occurs when placing subgingival or equigingival margins for finishing procedures, and in addition, if the margin is placed too far below the gingival tissue crest, it violates the gingival attachment apparatus. Not only do restorative margins placed subgingivally risk invading the attachment apparatus, but also unwanted tissue effects appear to result merely due to their subgingival location, regardless of the depth of the sulcus penetration.[8]

CRITERIA FOR PLACEMENT OF MARGIN[9]
The following three rules can be used to place subgingival margins:
• If the sulcus probes 1.5 mm or less, place the restoration margin 0.5 mm below the gingival tissue crest. This is especially important on the facial aspect. • If the sulcus probes more than 1.5 mm, place the margin one half the depth of the sulcus below the tissue crest. This places the margin far enough below the tissue so that it still is covered if the patient is at higher risk of recession. • If a sulcus greater than 2 mm is found, especially on the facial aspect of the tooth, then evaluate to see whether a gingivectomy could be performed to lengthen the teeth and create a 1.5 mm sulcus.

FINISH LINE/RESTORATION MARGIN DESIGN
Beveled shoulder
When porcelain-fused-to-metal (PFM) restorations were introduced, the metal collar was considered an ideal margin for this type of prosthesis. Thus, the prescribed finishing line was the beveled shoulder, based on the notion that its use would reduce the marginal opening of the gold casting.

Knife edge
For PFM restorations if a knife-edge finishing line is to be used then the butt joint necessary to accommodate the porcelain has to be created within the metal coping further coronally. Especially on the mesial or distal aspect of the tooth. This results in a root that appears dark, and the margin appears gray. When using highly translucent feldspathic porcelain clinicians can achieve a “contact lens” effect, making the margin disappear. As a result there is no need to hide the margin subgingivally.

Flat shoulder
This design has, over time, replaced the beveled shoulder as the resulting butt joint permits the use of a bulk of porcelain at the margin, thus removing the need for a metal collar. A shoulder width of 1 mm to 1.5 mm at a 90° to 100° angle to the root surface is ideal. The axial line angle should be rounded to reduce stress concentration in that area. This design is sometimes referred to as the radial shoulder.

Chamfer
This is now the finishing line of choice for most cast veneer preparations and hence recommended for most ceramic restorations. Chambers are less likely to have undercuts and are generally considered to be more conservative than shoulder preparations although a similar degree of tooth reduction is required.

CRITERIA FOR SELECTION OF FINISH LINE
The following criteria for margin selection seem reasonable:
• The selected margin must provide a predictable level of marginal integrity. The cervical margins that meet this criterion include: The shoulder, the shoulder bevel, and the slant shoulder.
• The shoulder and shoulder bevel meet the criterion to provide smooth materials to the gingival sulcus so as to minimize plaque accumulation. The shoulder can be used with a metal margin, which can be highly polished, or with a porcelain margin, which results in glazed porcelain in the sulcus.
• In situations where esthetics are important, the clinician has three options.
 • For an all-ceramic crown, a shoulder margin with a rounded internal angle or a deep chamfer should be used. Then the resulting butt joint necessary to accommodate the porcelain has to be created within the metal coping further coronally. This design is sometimes referred to as the radial shoulder.

REFERENCES
5. Malathi K, Singh A. Biologic width: Understanding and its preservation. International Journal of Medical and Dental science Jan 2014; 3:1
Intricacies in Osseoperception: A changing scenario from proprioception

ABSTRACT:
The periodontal ligament, which connects the root of the tooth to the jaw bone, contains many mechanoreceptors that provide the tactile function and fine tuning of jaw motor control. Extraction of tooth will remove these receptors and reduce the intra-oral neural input to the brain. The rehabilitation of edentulism by means of endosseous implants leads to an improvement in the sensory and motor functions but fail to reach the same level of sensitivity as dentate subjects. ‘Osseoperception’ is defined as a perception of external stimuli transmitted via the implant through the bone by activation of receptors located in the peri-implant environment, the periossteum, the skin, the muscles and/or the joints.

Keywords: Proprioception, osseointegration, osseopercetion, oral kinaesthesia

INTRODUCTION
In humans, perception is enabled by several kinds of sensory systems which include vision, audition, balance, somatic function, taste and smell. The initial contact with the external world is made through special neural structures called sensory receptors or end organs. The human somatic sensory system have four types of afferent nerve fibres: Aα, Aβ, Aδ and C. Based on the structure as well as signalling properties, receptors can be divided into several classes including thermoreceptors, nociceptors and mechanoreceptors. In the periodontal ligament (PDL) free nerve endings are present which may be responsive to pain. The majority of the receptors located within the periodontal ligament are of the mechanoreceptive type. The periodontal ligament acts as the medium of occlusal force transfer and it acts as a shock absorber for occlusal loads and as a hydraulic damper serving to reduce the magnitude of loads that are transferred to the surrounding alveolar bone. Based on this behaviour, it is anticipated that the magnitudes of strain and distribution in the alveolar bone will be altered by removal of the PDL. Additionally, the PDL acts as a highly viscoelastic material. Any condition influencing the periodontal mechanoreceptors, alters the sensory feedback pathway and thus affect the tactile function and fine tuning of jaw motor control.

Periodontal ligament and proprioception

Proprioception is the ability to sense stimuli arising within the body regarding position, motion, and equilibrium. One of the main functions of the periodontal ligament in masticatory cycle is to provide sensory feedback during chewing. Humans are capable of detecting the presence of even very small particles between the occlusal surfaces of teeth. The teeth also can serve as an excellent judge of assessing material properties. There are proprioceptive sensors in the PDL that provide sensory information about how fast and hard to bite. The conscious feedback mechanisms of the PDL play a significant role in the proper mechanical function of the masticatory system by assisting in particle identification and maintaining appropriate force application.

Oral mechanoreceptors may be classified on the basis of their response properties into two main categories: slowly adapting (SA) types and rapidly adapting (RA) types. These two categories are associated with the sensations of touch-pressure (SA types) and flutter-vibration (RA types). The structures which mediate mechanosensation in the mouth include Merkel cell complexes, Ruffini type endings, Meissner endings and Pacinian corpuscles. Refined mechanoreceptive properties of the receptors in the periodontal ligament are likely to be related to an intimate contact between collagen fibres and Ruffini-like endings.

Dense innervations of myelinated nerve fibres are distributed heterogeneously in the human PDL and with increased density in the loaded (i.e. the alveolar) areas.

Tooth extraction may result in alteration in oral motor behaviour as well as natural masticatory function. Extraction will also result in loss of periodontal mechanoreceptors as well as intradental nociceptors. Replacement of the extracted tooth can be done by either removable or fixed prostheses. The introduction of osseointegration has led to the successful placement of implant-supported restorations in edentulous and partially edentulous patients. Dental implants are being used to support removable and fixed reconstructions, thus rendering long-term predictable outcomes in fully and partially edentulous patients and in patients with single tooth gaps. Even though there are several advantages for implant prostheses, lack of proprioception is a major disadvantage.

Concept of osseoperception

Osseoperception is defined as mechanoreception in the absence of a functional periodontal mechanoreceptive input and it is considered to be derived from TMJ, muscle, cutaneous, mucosal, periodontal mechanoreceptors which provide mechanosensory information for oral kinaesthetic sensibility in relation to the jaw function and the contacts of artificial teeth. The phenomenon of osseoperception of implants was first noted by Haroldson et al in 1979. According to him bone anchored prostheses in edentulous patients transmit sensory information via a protective neuromuscular pathway. Perceptions of static jaw position and velocity of jaw movement (whether imposed or voluntarily generated) and forces generated during contractions of jaw muscles constitute oral kinaesthetic and proprioceptive sensations. "Extensive studies are available on the neural basis of limb kinaesthetic sensitivity, but only less information is available on oral kinaesthesia in dentate individuals as well as in patients with implant supported prosthesis."

Bone innervation includes both myelinated and unmyelinated nerve fibers located in the periosteum, bone cortex, Haversian systems, Volkmann's canals, and the marrow spaces. Periodontal mechanoreceptors is one of the underlying mechanisms governing the phenomenon of osseoperception. Histomorphometric evidence have shown the presence of myelinated nerve fibres which densely populate the peri-implant crestal gingival and apical regions, although they were also identified in the woven bone and in the osteons near the implant threads, largely contribute to the osseoperception of dental implants.

The mechanism of oral kinaesthesia is similar to limb kinaesthesia. The CNS has two mechanisms to operate for oral kinaesthetic perception:

- The first is by monitoring a collateral discharge of the descending central command to muscles. The function of this mechanism is to provide the sensation of muscular force or effort which accompanies centrally generated voluntary motor commands. An input from Golgi Tendon Organs (GTOs) which is associated with the jaw closing muscles is important in the sensation of effort in voluntary biting. The collateral discharge does not provide a sensation of movement or altered position.
- The second mechanism is derived from mechanoreceptors activated during jaw movements and different jaw positions.

The response of oral mechanoreceptors to natural stimuli is determined by morphological factors such as the nature of the relationship between nerve ending and certain cellular specializations, their distribution in the muscosa, the diameter of their primary afferent nerve fibers, and the central distribution of these fibers in the brainstem. Because of the morphological
similarities to certain cutaneous mechanoreceptors, the mucosal lining may be considered as an internal continuation of the large “receptor sheet” for localization and detection of the mechanical stimuli.

Mechanoreceptors contributing to Osseoperception

(a) Joint mechanoreceptors

These are low-threshold mechanoreceptors which are present in the TMJs of experimental animals and humans[22,23,24,25] and in other joints of the body[26] TMJ receptors may play a more significant role[19,26] in signalling movements and positions.

(b) Muscle mechanoreceptors

The two major mechanoreceptors associated with muscle are GTOs and muscle spindles, which are slowly adapting receptors. Golgi tendon organs are found at the musculo-tendinous junction in series with a small number of extrafusal muscle fibers. The pull of the muscle fibers with muscle contraction results in the activation of GTOs. Golgi tendon organs have been reported in jaw muscles. [27,28,29] They provide detailed information concerning the magnitude of muscle contraction. Besides they play an important role in regulating muscle contraction and signals the intramuscular tension.

These receptors, along with corollary discharge, senses the intramuscular tension generated during voluntary contractions such as biting.

Muscle spindles are the most complex somatosensory receptor in the body which provide detailed information on muscle length and rate of change. They lie in parallel with extrafusal muscle fibers, have independent sensory innervations, and contain specialized intrafusal fibers. Gamma (γ) motor neurones are the effector innervation to the intrafusal muscle fibers. With γ motorneurone discharge, the contraction of intrafusal fibers will contribute to an increased spindle afferent discharge.

During voluntary muscle contraction, both α and γ motorneurones are activated simultaneously (α-γ co-activation), which ensures that muscle spindles maintain their high sensitivity without saturation. The intramuscular receptors in jaw muscles and periodontal mechanoreceptors perform function in the assessment of jaw position and movement. The spindle muscle fibers have afferent discharge that arises from γ motorneurone and as a result of an actual change in muscle length. The Central Nervous System (CNS) have specific mechanisms to distinguish between these afferent discharge.

The δ motorneurone signals are identified by the CNS via corollary discharge. The resultant signals are interpreted by the CNS as muscle length and change in length. [20,21,22] Hence, in the absence of periodontal afferent input, the muscle mechanoreceptors can provide detailed information on jaw position and movement.

(c) Cutaneous mechanoreceptors

These receptors were shown to display a positional sensitivity. [30] Cutaneous receptors in the hairy skin overlying the TMJ can respond to skin deformation which occurs during jaw movement and contribute to the perception of force. The spindle muscle fibers have afferent discharge from the central nervous system (CNS) as muscle length and change in length. Hence, in the absence of periodontal afferent input, the muscle mechanoreceptors can provide detailed information on jaw position and movement.

(d) Mucosal mechanoreceptors

Periodontal mechanoreceptors are responsible for refined interdental discriminative function in the presence of natural teeth. [22,31] In the case of implant-supported prostheses opposing complete dentures, a contribution to oral kinaesthetic perception could come from the activation of mucosal receptors beneath the complete denture and possibly periodontal and/or mucosal mechanoreceptors in the vicinity of the implant fixture. [32] Mucosal receptors show low thresholds and graded responses to mechanical stimuli that could contribute to assessments of position and velocity of jaw movement at tooth contact, as well as force of muscular contraction.

(e) Periosteal mechanoreceptors

There are few physiological data on the potential role of periosteal mechanoreceptors in oral kinaesthetic mechanisms. The periosteum contains free nerve endings, which include complex encapsulated and unencapsulated endings. These free nerve endings are activated either by pressure or stretching of the periosteum by the action of the masticatory muscles and skin. [33]

Central processing of Somatosensory information for Osseoperception

For mechanoreceptive information to reach conscious perception, it must project to the cerebral cortex. The somatosensory information obtained from the various receptors which include cutaneous and mucosal mechanoreceptors, muscle spindles, and GTOs associated with jaw muscles, as well as TMJ and periodontal mechanoreceptors have been demonstrated at various levels of the orofacial somatosensory afferent pathway. These pathways include the trigeminal sensory nucleus, the ventroposteromedial (VPM) nucleus of the thalamus, and the primary somatosensory cortex (SI) in a number of animal species [34,35,36,37] as well as in the human [38]. This information is used for reflexes [39,40] for the modulation of mastication and swallowing [41,42] for the control of voluntary orofacial movements, oral kinaesthesia and tactile perception. Much of this mechanoreceptive information is capable of being transmitted along somatosensory afferent pathways with high synaptic security.

In the absence of periodontal afferents, an extensive cortical representation of cutaneous, mucosal, and deep somatosensory afferents could contribute, to conscious perceptual experiences associated with kinaesthetic sensitivity. Patients with modified somatosensory input following tooth extraction and the subsequent restoration with implant-supported prostheses, instead of complete dentures, may accommodate to the new intra-oral environment by selectively attending to specific orofacial afferent information in the functional accommodation of the new prosthetic appliances. The fitting of implant-supported prostheses will evoke a change in somatosensory input to the brain that will be markedly different from that occurring with complete dentures. Somatosensory cortical areas may play a role in focusing attention on these specific sensory inputs derived from orofacial mechanoreceptors and provide a framework for the individual to accommodate to this altered intra-oral environment.

After the removal of periodontal input and provision of implant supported prosthetic, plastic changes occur in somatotopic maps in the face motor and somatosensory cortical regions. These plastic changes may be directly associated with the ability of the individual to accommodate to their new prosthesis. Furthermore, the extent of these changes, together with specific treatment differences and individual oro-dental characteristics, may explain why some individuals experience more difficulty than others in the process of accommodating to either fixed or removable prostheses. It is likely that the better the quality of the prostheses in optimizing esthetics, form, and function, the more readily will the sensory-motor system will adapt. It follows that the closer the final prostheses come to restoring original function (e.g. implant-supported fixed prostheses compared with complete dentures), the closer the sensory-motor system will re-establish its original characteristics.

Several studies have demonstrated that the tactile sensation depends on the implant surface structure. [43] He et al proposed a novel design of dental implant, wherein nano-springs were used to construct a stress-cushioning structure inside the implant. [44] This novel design, transfers the main biomechanical interface of the implant from outside to inside, which some extent compensates for the forces of periodontal in stress cushioning and proprioception. Future research in the field of implantology might develop new systems with osseointegration and osseoperception.

CONCLUSIONS

Patients with implant- supported prostheses have improved tactile discriminative capabilities and report improved motor function in comparison with those wearing complete dentures as well as removable partial dentures, although their sensory and motor capabilities do not appear to match those of dentate individuals. With the loss of dental and periodontal mechanoreception, other peripheral receptors dominate in afferent projections to the somatosensor cortex and provide the neural basis for perceptual abilities of patients with implant-supported prostheses. The evidence available on the plasticity of the CNS provides a possible neural basis for our understanding of the accommodation of patients to these changes in dental status. However, it is also likely that an appropriately designed implant-supported restoration, being fixed to bone, more closely resembles the dental status before tooth loss, and this may more appropriately restore the optimal motor as well as sensory functions of the masticatory system.

REFERENCES

51. Neuman et al: Osseoperception

54. ProskeU: The Golgi tendon organ. Properties of the

Infection control practices in dentistry

Pallavi Menon, Jayachandran P

ABSTRACT:
Infection control is an essential part of the dental set up, as the patient’s saliva mixed with blood, pus, plaque and crevicular fluid is often aerosolized and spat tered, thus exposing the dental professional to potential infectious agents like HIV, HBV, herpes, etc. Dentist must be aware of the infection control protocol and mandatorily follow them in his dental set-up. This review article highlights the various infection control protocols to be followed in dental settings which include the different practices of sterilization, surface disinfection, personal protection and waste segregation.

Keywords: Infection control, sterilization, surface disinfection, personal protection

INTRODUCTION:
Infection control is one of the cornerstones of modern dentistry. It is extremely important not to risk the transmission of any disease. All materials and conditions must be free of bacteria to ensure low risk to patient, the dentist, and the auxiliary personnel. By definition, infection control is the discipline concerned with preventing nosocomial or health care associated infection. It refers to procedures and activities which aim to prevent or minimise the risk of transmission of infectious diseases. In this review article, the practices of sterilization, disinfection, personal protection and waste segregation, are discussed for the dental personnel who are at risk of being exposed to infectious materials like body fluids and contaminated equipments, environmental surfaces, water and air. The various infection control practices, if followed, can reduce the potential for cross contamination, i.e., disease transmission from patient to patient, from dental professional to patient, and from patient to dentist, via the various routes of disease transmission. The most common routes of disease transmission are:

a) Direct contact (e.g. blood)

b) Indirect contact (e.g. instruments)

c) Contact of oral mucosa with droplets generated from an infected person (e.g. by coughing, sneezing, or talking);

d) Inhalation

Following are the most common and simple preventive practices to be followed by the dental personnel in a routine dental practice.

PERSONAL PROTECTION
Dental team professionals must adapt a series of precautions in order to avoid the various infections to which they are exposed. Education emphasizing the importance of sensibility in this subject undoubtly is the first and the most important step.

A set of precautions called universal/standard precautions is designed to prevent transmission of HIV, HBV, and other blood-borne pathogens when providing first aid or health care. According to Centers for Disease Control & Prevention, all patients must be treated as potentially infectious and it involves use of protective barriers & precautions to prevent injuries caused by sharp instruments. The principles of standard precautions include:

a) Hand washing

b) Use of protective barriers i.e. the use, of personal protective clothing
c) Biomedical waste segregation at the time of generation and not after completion of the procedure
d) No recapping of needles

e) Effective cleaning, decontamination and sterilization of equipments, instruments and environment

f) Timely management of spillages

g) Use of appropriate disinfectants at the correct working dilution.

Patient evaluation
A thorough medical history should be taken from each patient and updated at each recall visit. While taking a history, the practitioners should identify the infectious diseases of concern, and relevant questions should be asked to disclose sensitive personal information and identify patients who are either particularly susceptible to infection or who are at risk of transmitting infection, known as carriers of disease or by being in a high-risk category.

Patients should be asked whether he/she has been tested positively for following: AIDS, herpes, hepatitis A, hepatitis B, respiratory illness, etc.; also whether he/she lost 10 pounds in last 6 months without dieting; has he/she undergone any blood transfusion before 1985; and whether any recurrent sores in mouth or other parts are present.

HAND HYGIENE
Fingers are the most common vehicles of infection transmission, hence, hand hygiene of all staff members who are either directly or indirectly in contact with patients should be scrupulous. Hand washing is done at the beginning of the clinical session and soon after removal of gloves. Hands are washed with water and an antimicrobical soap (having chlorhexidine gluconate (CHG) at 0.75% to 4% concentration that may be dispensed as liquid soap or foam, perchlorometaxylenol (PCMX) liquid, iodine liquid or trichlosan liquid, gel or foam).

After handwashing, any cuts and bruises, if present should be medicated and covered using a band aid/dressing. Scrubbing hands all the way up to the elbow for about 2 to 6 minutes using a single-use disposable sponge or a soft scrub brush removes the dead cells along with the bacteria resident on the skin of the hands.

Steps in handwashing:

- Wet hands completely with warm water. Extremely hot or cold water should be avoided, as temperature extremes may increase the risk of dermatitis.

- Rub hands thoroughly for at least 15 seconds, making sure to cover all surfaces of the hands and fingers.

- Rinse hands thoroughly.

- Dry hands thoroughly.

- Turn off manual faucets using a disposable towel to prevent recontamination of hand.

A clean sink should be provided for hand washing, and the taps should be elbow, foot, or sensor operated. Keep finger nails short and clean. Jewellery should be removed as they tend to entrap organisms and damage gloves.

PERSONAL PROTECTIVE EQUIPMENT (PPE)
These are used to protect personnel from blood and body fluids and chemical hazards, to control cross contamination and prevent spread of microbes. Barrier protection includes use of gloves, eye shields, face masks and rubber dam isolation. OSHA regulations specify that all dental personnel must wear treatment gloves during all treatment procedures. Gloves must meet the new Food and Drug Administration (FDA) regulation: less than 4 per 100 can have a leak detectable by a water test.

Protective eyewear may consist of goggles, or glasses with solid side shields which protect the eyes from droplets or aerosols. Face masks prevent splatter from patient’s mouth or splashes of contaminated solutions of chemicals.

IMMUNIZATION
Hepatitis B virus (HBV) infection is a well-recognized occupational risk for health care professional (HCP) including dental professionals. Immunization is the choice to prevent HBV infections in dental settings. Immunizations substantially reduce both the number of dental professionals susceptible to these diseases and the potential for disease transmission to...
other dental professionals and patients. Thus, immunizations are an essential part of prevention and infection-control programs for dental professionals, and a comprehensive immunization policy should be implemented for all dental health-care facilities. The schedule for immunization is three doses of 0, 1, and 6 months and a booster dose after every 5 years.

STERILIZATION AND DISINFECTON

Patient-care items (dental instruments, devices, and equipment) should be categorized as critical, semi-critical, or noncritical, depending on the potential risk for infection associated with their intended use, according to Spaulding.36 According the proper procedures for sterilization and disinfection should be selected. Various physical and chemical methods of sterilization are available such as dry heat sterilization (flaming, incineration, hot air oven), moist heat sterilization (pasteurization, boiling, autoclaving), glass bead sterilization, radiation sterilization, filtration, sonic and ultra sonic sterilization, ethylene oxide sterilization etc. The killing effect of dry heat is due to the protein denaturation, oxidative damage and the toxic effects of the elevated levels of electrolytes. The principle of autoclave is that when water boils, its vapour pressure equals that of the surrounding atmosphere. Hence, when pressure inside a closed vessel increases, the temperature at which water boils also increases. All surgical instruments can be sterilized using this method. Saturated steam (steam in thermal equilibrium with water from which it is derived) has penetrative power and acts as an effective sterilizing agent. Steam for sterilization can be either wet saturated steam (containing entrained water droplets) or dry saturated steam (no entrained water droplets). Steam comes into contact with cooler surface and condenses to give up its latent heat.37

Before sterilization, the contaminated instruments should undergo grouping, pre-soaking, pre-sterilization cleaning, drying, proper sealing and packaging. The biological indicators (eg- spore strips of Bacillus stearothermophilus) must be checked for every sterilization cycle, if not at least once in a week. The sterilization is carried out by steam for sterilization. Contaminants are inorganic materials such as salts from the hardness of the source water that coat the lines and cause corrosion of metals and allow settling of microbes.

MEASURES TO CONTROL WATER CONTAMINATION:

- Flush water lines at the beginning of the day for 30 seconds.
- Flush for several minutes between patients to remove contaminants that can enter the water system during patient treatment.
- In general, disinfectants are allowed to remain in the lines overnight and are then flushed from the lines the next morning.

If bleach is used, it should be left in the tubing for a short period of time.22-24 The water systems are flushed for several minutes at the beginning of the day to remove contaminants. After use, the contaminated syringe with needle is inserted in the destroyer which generates a high temperature above 1600ÚC, thereby completely burning the needle and reducing to ashes in just two seconds.

WASTE SEGREGATION AND MANAGEMENT

Biomedical waste is defined as any solid or liquid waste arising from health care or health related facilities. Categories of biomedical waste include: a. Non- infectious (waste not contaminated with body fluids). Infectious waste: (waste contaminated with body fluids and hazardous to others). All waste generated in dental practice must be segregated into one or other of these categories and disposed off appropriately:

- Waste is segregated and colour coded.

CONTAINER AND COLOUR CODING FOR SEGREGATING WASTE [Table 1]

- Black - Non infectious materials
- Yellow - Potentially infectious materials
- White - rigid and puncture proof sharps.
- Red - infected dressings, blood and body fluids.

All segregated waste should be packed in proper containers with red labels monitoring details of biomedical waste and biohazard sign.

CONCLUSION

The huge number of dental professionals working in the field of oral care is prone to various infections like hepatitis, human immunodeficiency viruses (HIV) etc. while taking care of the patients. This enhances the need to follow the basic infection prevention practices so as to avoid the infections amongst themselves and between the patients. Each and every dental health-care facility and procedure should be defined step wise and adhered to strictly guarding both dentist and patient.

REFERENCES

7. Dr Julie George Alapatt, Dr Neenu Mary Varghese, Dr Joy P Tjr Mohamed Saheer K, Dr Bennett Atlin Correya. Infection Control In Dental Office: A Review. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e- ISSN: 2279-0853, p-ISSN: 2279-0861.15(2) Ver. VIII (Feb. 2016), PP 10-15
Role of occlusion in restorative dentistry

Pranitha Prabhakaran, Annapoorna BM

ABSTRACT:
Dental occlusion is much more than the physical contact of the biting surface of opposing teeth or their replacements. The materials used in conjunction with restorative dentistry have been changing over the years. Considerable information has been made available concerning their physical and mechanical characteristics. However, factors concerning their effect on occlusion and equilibrium of teeth have not received equal attention. This review is an attempt to provide a basic knowledge of occlusion, as required for the successful placement of the smallest to the largest restoration.

Key words: Occlusion, restorative dentistry, direct restoration, indirect restoration

INTRODUCTION
The basic objective of restorative dentistry is to develop the form, function and esthetics of the teeth to be in harmony with the stomatognathic system. Occlusion is comprehensively defined biologically as the coordinated functional interaction between the various cell populations forming the masticatory system as they differentiate, model, remodel, fail and repair. This review is an attempt to provide a basic knowledge of occlusion and its significance in restorative dentistry.

FEATURES TO BE ACHIEVED IN AN OCCLUDING RESTORATION

All features of optimal occlusion should be achieved. Any interfering tooth parts should be eliminated. Incline contacts of occlusion should not be present in restored teeth in order to avoid ‘skids’ or eccentric movements of mandible when closing at intercuspal contact position. The vertical dimension of occlusion should be maintained. The contacts of the cusps should be kept broad if the holding cusps occlude with more than one opposing tooth to prevent movement of the opposing teeth in a non-axial direction by the holding cusps. Disclosure should occur starting posteriorly and ending by canine disclusion. Posterior disclusion should be achieved in protrusive movements. The features in a restoration must...
most cases conform to the pre-operative occlusion.

NEED FOR RESTORING NORMAL OR PRE-EXISTING OCCLUSION

Occlusion can be static and dynamic. The types of occlusal schemes are mutually protected occlusion, group function and balanced occlusion. New restorations should not introduce any premature contacts and cuspal interferences. Each tooth is to be restored to pre-existing physiologic occlusion or to an ideal occlusion so as “to achieve optimum functions of the neuromusculature, joints, and the supporting structures of the teeth.”

Correct relationship with adjacent and opposing teeth and buccolingual contour gives the best support against masticatory stresses, prevents food impaction, promotes deflection of food through the embrasures and prevent reflective occlusal contacts. The pulp of the teeth is very sensitive and reacts immediately to abnormal occlusal forces. Hence, occlusion should not be detrimental to pulp.

OCCLUSAL ANALYSIS – PRE TREATMENT EVALUATION

The diagnostic process begins with careful history taking followed by a screening examination.

Questionnaire:
- Is it difficult or painful to open the mouth?
- Is it difficult or painful to chew, talk or use the jaws?
- Do the jaw joints make noises?
- Do you have pain in the ears, temples or cheeks?
- Do the jaws often feel stiff or tired?
- Is it difficult or painful to chew, talk or use the jaws?
- Is it difficult or painful to open the mouth?

DIAGNOSTIC PROCEDURE

Prior to cutting a tooth, its opposing occlusal surfaces should be examined. Malpositioned opposing supporting cusps, ridges or fossae may be reduced and any premature contacts or cuspal interferences may be eliminated. For the proper reproduction of ideal contacts and contours of teeth, two operative acts must

TREATMENT PLANNING – CONFORTATIVE OR RE-ORGANISED APPROACH

Treatment planning is to be followed by diagnosis, which includes occlusal analysis, radiographic examination and diagnostic casts.

Conformative approach: The provision of restorations ‘in harmony with the existing jaw relationships’. This is indicated when patient has an ideal occlusion, changing the occlusal surface does not significantly affect the patient’s centric occlusion, number of teeth to be restored is less than six, posterior occlusion is stable, and there is no existing mandibular dysfunction.

Reorganised approach: “The provision of new restorations to a different occlusion which is defined before the work is started: i.e. ‘to visualise the end before starting’. This is indicated when restoration involves teeth with deflecting contacts, multiple restorations, full mouth rehabilitation, reduced vertical dimension, significant change in appearance is desired, fracture of existing restorations or teeth, and presence of mandibular dysfunction.”

FORMULATION OF OPTIMAL RESTORATIONS

INDIRECT RESTORATIONS:

The occlusal surface of indirect restorations is fabricated in wax with great accuracy. This may be achieved by addition of wax incrementally (waxulative technique), carving a wax mass to the restoration shape (carve down/ negative carving technique), direct wax pattern (intraoral), or anatomic core wax pattern.

Supporting cusp to marginal ridge relationship is followed in all except the mesiopalatal cusps of maxillary molars and distobuccal cusps of mandibular molars that contact opposing central fossae. Restorations may be carved to duplicate this form. (Figure 1).

Triposidal contact may be created with the supporting cusps contacting the inclines of the triangular ridges as they converge into the central or triangular fossae. (Figure 2).

Occlusal contacts in wax should be verified prior to casting with the use of powder and thin cellophane strips. Once the restoration has been accurately cast, it may be tried in extra orally and intraorally before adjustment.

DIRECT RESTORATIONS

Prior to cutting a tooth, its opposing occlusal surfaces should be examined. Malpositioned opposing supporting cusps, ridges or fossae must be reconstructed to achieve optimal occlusal contacts in the restored tooth. Plunger cusps and over-erupted teeth may be reduced and any premature contacts or cuspal interferences may be eliminated. For the proper reproduction of ideal contacts and contours of teeth, two operative acts must precede or accompany the restorative procedure— tooth movement and matricing.

In amalgam, establishment of a single point contact at the fossa is recommended as a practical alternative to tripodisation as inadvertent removal of any one of the three tripod contacts will result in occlusal instability. When the entire tooth is to be built up in amalgam, there are no enamel planes to guide and existing incisal guidance must be restored. (14)

OCCLUSAL AND RESTORATIVE MATERIALS

The relationship between occlusion and restorative materials is mainly dictated by the wear of teeth or restorative materials. The other factors include occlusal forces, the type of guidance, presence of parafunctional movements, available crown height.

Amalgam: The wear rate of amalgam is only slightly more than enamel and has no appreciable effect on the function of occlusion. Hence, these are preferred in areas of heavier occlusal forces and in patients with parafunction. It was noted in a clinical comparison of amalgam and composite restorations at three years that only 5%—10% of amalgam restorations lost their anatomic form compared to composite restorations (60%—70%). (15)

Composite resin: They showed a wear rate 2.5 – 3 times the adjacent areas. They have very low abrasive resistance compared to enamel. In some cases it was found that opposing tooth had supraerupted to maintain function with worn composites. Also, in time, contact areas of class II composites were found to be substantially flattened due to wear, resulting in shifting of adjacent teeth thus altering occlusion. Some currently available systems exhibit wear rates nearly the same as amalgam.Extent of wear depends on size and hardness of the filler particles. The microfill is least abrasive followed by barium silicate glasses and finally quartz filled posterior composite resins. Larger the particle size, greater is the degree of wear. Also, it was found that “Heat treatment” of resin inlays and onlays reduced wear. Decreased proximal wear was noted when resin was dry heated at 125°C for 5 minutes after first curing by light than those that were light cured only.

Porcelain: They have great potential for abrading the antagonist material or tooth due to hard quartz particles in the feldspathic matrix. Improper occlusion with porcelain coincidentally generates a clicking type of sound whenever the opposing teeth contacted prematurely. They cause uneven wear of teeth resulting in loss of occlusal stability. Occlusal interferences associated with posterior porcelain restorations can also trigger bruxism. The use of porcelain for maxillary anterior teeth is generally contraindicated in cases of limited canine guidance, decreased overjet and increased overbite, when teeth are thin in labiolingual direction and when there is evidence of bruxism. Patients with porcelain occlusals require careful regular monitoring for occlusal imbalances and excessive wear.

Polymeric Resin: Polymeric teeth are considerably less wear resistant. Small occlusal interferences are eventually neutralized or eradicated through normal function. (15)

Base metal alloys: The difficulty of developing functional harmony and their extreme hardness make the base metal

Figure 2: Tripodised contact

![Figure 2: Movement of maxillary supporting cusp across opposing mandibular teeth](image-url)
alloys often the cause of trauma from occlusion. It is difficult to adjust the occlusion on stainless steel crowns and their removal may be necessary when interferences are more than minimal. In cases where considerable amount of effort is required for establishing and maintaining occlusion (such as in cases of bruxism), gold or palladium based cast alloys are materials of choice because they exhibit similar mechanical properties. It is found that relative wear rate of ‘like’ restorative materials opposing each other is less than the total wear of different combinations and hence like materials should oppose each other where possible. An appropriate concept of occlusion and restorative dentistry must reflect an increasing awareness of the procedures which not only contribute to clinical convenience, but also addresses the question of providing an optimal state of health for the life time of the patient. These goals can only be accomplished by relating restorations to the total masticatory system and the psychologic needs of the patient.

REFERENCES
4. Dowson PE. Functional occlusion from TMJ to smile design, 2nd edition. Elsevier
15. Rosenberg A. Occlusion, the dental pulp and endodontic treatment Dental Clinic of North America 25:3 423 July 1981.

Oral pyogenic granuloma: A Misnomer

Sajith Abraham1, Sheethal Joy2, Subair K3, Jeena Sebastian 4, Melwin Mathew5

ABSTRACT:
Pyogenic granuloma (PG) is a kind of an inflammatory hyperplasia which is common amongst the oral pathologies. A variety of names are present for the lesion based on its etiopathogenesis and histopathological perspectives. Overtime concepts kept refining with intense research and finally concluded the term “Pyogenic granuloma” as a misnomer since neither the lesion consist of pus nor it is histopathologically representing a granuloma. The etiology of the lesion is still a debate and so is the conflicting opinion on its name per se. Treatment of choice followed is usually conservative surgical excision but other treatment adjuncts are also discussed in this review. All together this review highlights the various aspects of PG which include etiopathogenesis, clinical, radiological, histopathological presentations and other investigations using immunohistochemistry markers along with new treatment modalities based on scientific evidences.

Keywords: Review, Pyogenic granuloma, misnomer, etiopathogenesis

INTRODUCTION
Pyogenic granuloma (PG) is the most common entity responsible for soft tissue enlargements and is a kind of inflammatory hyperplasia which means to describe lesions with broad range of nodular growths in oral mucosa along with histological component representing fibrous and granulation counterparts. PG is the commonest non-neoplastic tumour of skin and rarely occurs in gastrointestinal tract except for oral mucosa in which incidence is found high among keratinized tissue. It hails back in 1897 by Poncet and Dor and then was it named “botryomycosis hominis”. The literature search points to the fact that “Pyogenic granuloma” got its present name by Crocker in 1903. However some researchers believe that term pyogenic granuloma or granuloma pyogenicum was introduced initially by Hartzell in 1904. The incidence of Oral Pyogenic granuloma was found around 1.85% of all oral pathologies as per Bhaskar et al. in a study done at US Army Institute of Dental Research. Cawson et al. states that pyogenic granuloma is a
common lesion and represents 0.5% of all skin nodules and pregnancy tumour a variant occurs up to 5% in all pregnancies.1 Oral pyogenic granuloma was found to be the most frequent non-neoplastic lesion according to study by Shamim et al accounting to nearly 52.7% of the lesions.7 Therefore epidemiologic insights projects that this lesion is frequent among oral pathologies in general.

Why a misnomer?
A misnomer is a word or term that suggests a meaning that is known to be wrong. They often arise before the true nature was unknown or because the nature of an earlier form is no longer a norm. As the Latin word “etymon nominare” means “to name”; a misnomer means a special kind of mistake or misspelled or wrong name.8 There were different terminologies put forward to this lesion starting from the earliest “botryomycosis hominis” and also includegranuloma pediculatum benignum, granuloma telangiectactium, benign vascular tumor, pregnancy tumor, vascular epulis and Crocker and Hartzell disease as others. The lesion was subjected toan array of names from past to present based on the etiology and histopathological perspectives. Over time these concepts kept refining with more researches in this area and finally concluded; “Pyogenic Granuloma” as a misnomer since neither the lesion containus nodus nor it represent a granuloma histopathologically.9-13

Theories of Etiopathogenesis: Past to Present
Some investigators regard pyogenic granuloma as “infectious” in origin. Staphylococcus and botryomyces, foreign bodies and localization of infection in blood vessel walls were projected as factors of development of the lesion. Shafer et al. suggested that either staphylococci or streptococci could produce colonies with fungus like characteristics and oral pyogenic granuloma arises as a result of these infection.8 As per Reichart et al. granulation tissue in the lesion gets pyogenic granuloma arises as a result of these infection. As per Reichart et al. granulation tissue in the lesion gets pyogenic granuloma arises as a result of these infection. As per Reichart et al. granulation tissue in the lesion gets proliferation due to inflammation. However oral contraceptives influence on vascular changes in periodontium is still unclear due to absence of steroid receptors in the periodontium as per findings by Nichols et al. which suggest that estrogen or progesterone are not directly involved in formation of the lesion.10-13 Drugs like cyclosporine was seen to have a role in development of the lesion in patients who were given the drug for graft versus host disease.11-13 Inclusion bodies were found in the fibroblasts of the lesion suggestive of disordered protein metabolism according to the Davies et al.9-10 Growth rate of the tumour is not only seen related to proliferative activity of tumour cells but is also seen related to the rate of cell death. Studies have suggested low apoptotic rate in PG which is related to growth rate and regulation by Bcl2 family proteins.11

Clinical Presentations
Oral Pyogenic granuloma is the most common gingival tumour, with predilection for gingiva in 75% of all cases. Extravaginal lesions involve lips, tongue, buccal mucosa and hard palate. Lesions are common in maxillary gingiva and have predilection towards anterior region than posterior counterparts. Those lesions are much common on the facial aspect of the gingiva than the lingual aspect with some extending between teeth and both facial and lingual gingiva. Although PG occur at all age groups; highest incidence was seen in second and fifth decades and females were slightly more affected than males. Predilection in second decade among young females was possibly related to the vascular effects of female sex hormones.11-13

Clinical presentation of the lesion manifests from smooth or exophytic small, red erythematous papule on a pedunculated base or sessile, usually compressible and haemorrhagic. Size varies from few millimeters to several centimetres rarely exceeding 2.5cm in size.12 The clinical development of the lesion starts slow, asymptomatic and painless but at times grow rapidly. The surface is sometimes ulcerated which may be covered with yellow fibrous membrane. The colour ranges from pink to red purple depending upon the age of the lesion with younger PG’s appearing more reddish because of the capillary predominance present in the hyperplastic granulation tissue. Older lesions on the other hand are more collagenized and therefore appear pink.10

Pregnancy tumour a variant of PG appears normally in the second – third month of pregnancy, with a tendency to bleed and possibility of interaction while masticating food. In the initial months of pregnancy, the plaque influence persistently producing catarrhal inflammation of gingiva that serve a base for development of hyperplasia of the gingival tissue where as in the last trimester modulation is mainly by the circulating hormonal stimuli.14

Radiological Presentations
The relevant radiological findings are usually absent in pyogenic granuloma. In rare instances; long standing gingival lesionsthere is somealveolar crest where the epulis find attachment or it might produce saucer shape excavation of variable depth.10-13

Histopathological Presentations
Briefly the natural history of the lesion follows three distinct phases:12

1. Initial/Cellular phase - Consist of lobules which are compact and cellular with little lumen formation.

2. Capillary phase - The lobules becomes vascular with abundant intraluminal red blood cells. One or more central vessels form large lumen with thick muscular layer bearing resemblance to veins.

3. Late/Involutionary phase – Increased tendecncyfor intra and perilobular fibrosis with increased venular differentiation.

Two distinct histological patterns of PG exist which include lobular capillary hemangioma type and non - lobular type. The first type is characterised by proliferating blood vessels that are arranged in lobular pattern although superficially lesion does not undergo specific changes like edema, capillary dilation or inflammatory granulation tissue reaction.12 The latter non –lobular type consists of highly vascular proliferation that resembles granulation tissue with the central area consisting significantly increased number of vessels with peripheral mesenchymal cells non-reactive to alpha smooth muscle actin and muscle specific actin than its lobular type counterpart. Even though PG can undergo fibrous maturation over time; it is suggested that it happened only in non-lobular capillary haemangioma type of lesion clearly indicating different pathways of evolution amongst the two types of PG.12-13

Other Investigations: IHC Markers
Increased expression of basic fibroblast growth factor,Tie-2, anti -CD34 and anti-alpha SMA antibodies, vascular
morphogenesis factors such as Angiopoetin-1, Angiopoetin-2, Ephrin B2 and B4 respectively were seen evident in PG lesions. Also low apoptotic rate expression of Bax/Bcl-2 proteins and strong expression of phosphorylated mitogen activated protein kinase and increased expression on vascular endothelial growth factor (VEGF) were also seen significantly evident.20,21

Differential Diagnosis
Differential diagnosis is helpful in further evaluation and management of the patient. The differential diagnosis of PG lesions include peripheral giant cell granuloma, peripheral ossifying fibroma, peripheral odontogenic fibroma, hemangioma, conventional granulation tissue, hyperplastic gingival inflammation, Kaposi’s sarcoma, Bacillary angiomatosis, angiosarcoma and non-Hodgkin’s Lymphoma.22,23

TREATMENT
Excisional biopsy is indicated treatment of PG, except when procedure would produce marked deformity where incisional biopsy becomes mandatory line of investigation. Therefore management depends on the severity of symptoms.24 The usual treatment option include conservative surgical excision and removal of causal irritants like plaque, calculus, foreign materials, source of trauma etc. Excision with 2mm margins from its clinical periphery and to depth of periosteum or to causative agent was recommended.25,26 Recently other treatment protocols using lasers have been proposed because of the lower risk of bleeding compared to other surgical techniques. Nd:YAG lasers were superior to CO2 lasers because of its superior coagulation properties.27,28 Other treatment modalities for management of the lesion includes cryosurgery. Oral mucosa because of its humidity and smoothness was seen ideal for cryosurgery technique.29,30 Sclerotherapy with intralesional injections using sodium tetradecyl sulphate, absolute ethanol etc were seen to be other alternative treatment adjuncts used in practice because of its simplicity and lack of scarring quality but require multiple treatment sessions.31,32 Recurrence rate after surgical excision ranged from 5-10% of PG cases.33,34 Gingival lesions had higher recurrence rate compared to other oral mucosal sites and showed no infiltrative or malignant potential.

CONCLUSION
Oral PG is one among the commonest of all oral pathologies. The etiopathogenesis of the lesion is still debatable and so is its “name” making it difficult from the other oral lesions. This article helps to highlight on various aspects of the oral pyogenic granuloma based on scientific observations.

REFERENCES
12. Shafer’s textbook of oral pathology. 6th edition
Alveolar ridge augmentation in implant dentistry- Rebuilding a strong foundation

Saurabh Kishore P G, Nandakumar K, Padmakumar T P, Raju Kurien Ninan, Devisree Naveen, Teenu Abraham

ABSTRACT:
A severely resorbed alveolar ridge is a challenge in implant dentistry. Ridge resorption occurs following the loss of a tooth and is inevitable. For an implant to be successful both in function as well as esthetically the compromised ridge must be augmented. This review discusses current trends in alveolar ridge augmentation in preparation for dental reconstruction with dental implants.

KEY WORDS: Alveolar ridge, ridge resorption, guided bone regeneration, bone grafts, osseodensification

INTRODUCTION
Dental rehabilitation of missing teeth by oral implants has shown to yield high predictability and satisfactory longevity. In case of severe bone loss, implant placement is really a challenge that has significant impact on success of implants. Among several reasons of alveolar bone loss such as trauma, congenital alveolar defects, pathology, chronic/acute infection, periodontal disease, a tooth extraction and its sequelae is the most commonly encountered scenario that leads to this clinical deficiency. The atrophy of alveolar ridge after tooth loss follows definite patterns. In the maxilla, the labial wall of the alveolar socket tends to resorb more rapidly than palatal wall following dental extraction (centripetal resorption). In the mandible, however, the lingual wall tends to resorb ahead of the buccal wall (centrifugal resorption). This discrepancy in the resorption pattern will lead to a compromised sagittal and axial intermaxillary relationship. In both the jaws, the width of the ridge is compromised earlier than its height. These discrepancies will lead to difficulties in oral implant placements both in functional as well as esthetic perspective.

DIAGNOSIS AND TREATMENT PLANNING

Patient factors
There are no absolute contraindications for any of the bone augmentation procedures. But patient’s systemic status should be considered while the diagnosis and treatment planning is done. Certain systemic conditions such as diabetes mellitus should be taken into consideration which may impair the healing. Histologic evidence of impaired healing was found in implants placed in diabetic animals when compared to healthy controls, even though osseointegration was achieved in both groups. The potential for novo bone formation following guided bone regeneration (GBR) in experimental diabetes and metabolic control was investigated in rat models. No significant difference was found in the amount of vertical bone regeneration when insulin controlled diabetic, uncontrolled diabetic, and healthy animals were compared. But an increased rate of infectious complications was shown by the uncontrolled diabetes group.

Another factor which should be considered is smoking. It has been found that the long term prognosis of osseointegration is negatively affected by smoking. Smokers are more likely to develop complications such as peri-implant mucositis and peri-implantitis around successfully integrated implants. A systematic review reported higher rates of complications and failures in smokers than non-smokers. Also less amount of bone augmentation was seen in smokers when compared with that in non-smokers.

Preoperative evaluation of alveolar ridge
The evaluation of the alveolar ridge before intervention should mainly focus on the measurements of ridge dimensions to select appropriate implant size, the location of anatomical landmarks such as maxillary sinus and inferior alveolar canal. In order to decide on the ridge augmentation strategy, the remaining bone crest level is precisely determined using 3D scans.

Classification of ridge defects

Soft/hard tissue defects
Seibert (1983)

Class I	Bucco-lingual loss of tissue with normal apico-coronal ridge height
Class II	Apico-coronal loss of tissue with normal bucco-lingual ridge width
Class III	Combination-type defects (loss of both height and width)

Allen et al
A: Bucco-lingual loss of tissue
B: Bucco-lingual loss of tissue
C: Combination
Mild: ≤ 3 mm; Medium: 3-6 mm; Severe: > 6 mm

Hard tissue defects
Lekholm and Zarb

Class I	Virtually intact alveolar ridge
Class II	Minor resorption of alveolar ridge
Class III	Advanced resorption of alveolar ridge to base of dental arch
Class IV	Initial resorption of base of dental arch
Class V	Extreme resorption of base of dental arch

Misch and Judy
A: Abundant bone
B: Barely sufficient bone
C: Compromised bone
D: Deficient bone

Classification of ridge defects

Seibert’s Classification

Address for Correspondence:
Saurabh Kishore P G, Dept. of Periodontology, Azeezia College of Dental Sciences & Research, Kollam- 691537, Kerala, India.
E-mail: drsaurabhkishore@gmail.com
Date of Submission: 4-07-2016
Date of acceptance: 22-07-2016
Bone augmentation therapies

Guided bone regeneration

The treatment concept of GBR is to exclude the soft tissues from filling the osseous defect and allowing the bone forming cells to occupy the defect space. Depending on the type of defect, the space could be maintained by utilizing a block graft or a particulated graft. Different natural and synthetic biomaterials have been developed and used as graft materials in augmentation of ridge defects.

Barrier membranes: They are broadly classified into non-resorbable and resorbable. Expanded polytetrafluoroethylene (e-PTFE) is the most frequently used non resorbable membrane. It has a flexible property and external porous structure which allows tissue integration and an internal occlusive layer which functions as a barrier mechanism. A titanium scaffold is added between two layers of e-PTFE to enhance the space making capacity of these devices. But the disadvantage of these devices is that a second intervention is needed to remove them. So in order to overcome this difficulty resorbable membranes were developed. Biodegradable membranes are either natural (xenogeneic collagen type I or III) or made of synthetic polymers, including polyurethane, polylactic acid, polyglycolic acid, polyethylene glycol, and different combinations of polylactic and polyglycolic acid.

Biodegradable membranes when placed directly over the implant threads, tend to collapse and occlude the space available for bone regeneration. This problem can be avoided by using a scaffold or graft material under the membrane that provides the space for tissue in growth and subsequent bone formation. When non resorbable and collagen resorbable membranes, with and without the use of a scaffold, were compared in an animal study, similar bone regenerative outcomes was obtained for the non resorbable membranes and the collagen resorbable membranes used with a scaffold.102

Thus resorbable membranes are considered as the gold standard when used in conjunction with an adequate space-making graft material.

Bone grafts and bone substitutes:

Bone grafts

Autogenous bone grafts are considered as the gold standard in bone regeneration therapies as they have osteoinductive, osteoconductive and osteogenic properties.11 In alveolar ridge defects, autografts are either used as a particulate or a block graft. Particulate grafts are harvested from intra oral sites and are used along with barrier membranes following the principles of guided bone regeneration. Block grafts are harvested either from intra oral sites or extra oral sites. They are used with barrier membranes alone or they require fixation to the recipient site with micro screws in order to stabilize the graft while healing.

Allografts are harvested from cadaver and are processed by freezing or demineralization and freezing. It is then sterilized and made available as particulate or as blocks. They are usually used with barrier membranes following principles of GBR.

Xenografts are of animal origin, usually of bovine or porcine. These graft materials are prepared by deproteinizing and thereby avoiding the immunogenic property. These type of graft materials are usually particulate and used according to the principles of GBR.

Bone substitutes

Alloplasts are synthetic biocompatible bone substitutes. Alloplastic material such as tricalcium phosphate which is resorbable is osteoinductive and is totally inert and serves only as space fillers. They include different combinations of calcium phosphates synthesized under different sintering conditions to attain different physical properties and resorption rates. The combination of tricalcium phosphate and hydroxyapatite provides both scaffolding as well as an osteoconductive function. They are usually used as granules and should always be used in conjunction with barrier membranes.

Ridge augmentation procedures

Socket preservation

Socket preservation is a procedure which aims at minimizing alveolar ridge atrophy after tooth extraction. A wide range of socket preservation techniques and materials have been reported that significantly reduce bone loss following extraction. Atraumatic extraction leaving the socket wall intact is enough to regenerate socket bone formation.111 This procedure utilizes regenerative techniques such as resorbable / non-resorbable membranes, resorbable membranes in conjunction with bone substitutes, bone substitutes alone or bone substitutes in combination with soft tissue grafts. The subgroup analysis of a systematic review gave the following conclusions:112

- Use of membranes gave better results than for use of grafts alone in terms of horizontal bone changes.
- A slight tendency towards less bone loss in the horizontal direction was observed when the sockets healed by primary intention.
- Flapped (primary closure) surgical procedures demonstrated significantly less horizontal bone resorption of the socket, when compared to flapless (healing by secondary intention) surgeries.

Horizontal ridge augmentation

Horizontal ridge augmentation can be done by using either particulate grafts or block grafts, with or without barrier membranes. When there is enough bone width, it is indicated to use particulate grafts together with barrier membranes to allow good implant primary stability.

Both GBR and block grafts have been demonstrated to be a successful and predictable treatment modality to augment a horizontally deficient ridge.114 A randomized clinical trial study has revealed that onlay graft group attained more horizontal bone gain than GBR group.115 Since the use of autografts is limited due to morbidity while procuring the graft and also the higher resorption rate, bone substitutes, particularly xenografts along with barrier membranes are used and have demonstrated good results.

Ridge splitting & ridge expansion

This is a technique used in the maxilla to augment bone width through bone condensation. Summers first used this technique, osteocondensation, to augment bone width and elevate sinus floors in an attempt to avoid the lateral sinus lift. Chisels and ostotomes are used which will cause longitudinal greenstick fractures in the bone and create osteotomy sites without the need for drilling. This preserves the compromised bone volume. The bone is compressed to the lateral surfaces with the use of osteotomes of increasing diameters, thus increasing insutrength and density. The advantage of this technique is that it allows for the ideal implant diameter to be placed in the restoratively driven position. This procedure is followed by the simultaneous placement of the implant.

Ridge splitting is essentially the fracture of the buccal cortical plate and its displacement laterally to accommodate implant placement. The spaces created between the cortical plates and the implants are subsequently filled with particulate bone graft materials.

Ridge splitting using piezoeurosurgery

In the cortical mandible, bone splitting is much more challenging, as mechanical trauma as well as the shape and design of the cutting tools often fracture the thin and fragile bone segments. In such cases, bone sectioning with piezoelectric devices ensures micrometric osteotomies with no macrovibrations and allows easy handling with an increased maneuverability even in delicate cases.

Vertical ridge augmentation

Various studies during the last decade have reported good results using vertical bone augmentation techniques with bone graft materials, membranes, or both. However, vertical augmentation may be less predictable than horizontal augmentation.

A study in patients with atrophic edentulous ridges it was demonstrated that up to 4 mm of vertical bone augmentation can be predictably regenerated.116 The surgical protocol included the use of a membrane reinforced with a titanium structure. This membrane can be shaped to maintain the desired form, thereby creating and preserving sufficient space between the membrane and the bone defect.

Alveolar distraction osteogenesis

Distraction osteogenesis surgery is currently available worldwide for managing orthopedic disorders. The process of alveolar distraction osteogenesis involves mobilization, transport, and fixation of a healthy segment of bone adjacent to the deficient or deformed site.

A mechanical alveolar distraction device is used to provide gradual, controlled transport of a mobilized alveolar segment. Distraction is usually performed over a period of 30 days and significant bone gain can be attained (4–7 mm).117 When the desired repositioning of the bone segment is achieved, the distraction device is left in a static mode to act as a fixation tool. Because the soft tissue is left attached to the transport segment, the movement of the bone also results in expansion of soft tissue adjacent to the bone segment. As a result of the distraction process, the volume of bone and soft tissue increases. The reconstructed site is then suitable for further rehabilitation with osseointegrated implants.

However, distraction osteogenesis has frequent complications, such as fracture of the mandible or the movable segment, patient discomfort etc.

Molecular approach in bone augmentation

The use of growth factors has received more attention for treatment of deficient alveolar ridges. Advances in molecular cloning have made available limited quantities of recombinant growth factors for applications in tissue engineering. Recombinant growth factors such as platelet derived growth factors (PDGF), insulin like growth factors (IGFs), fibroblast growth factors (FGFs), and bone morphogenetic proteins (BMP's) have been used in clinical trials for the treatment of large ridge and alveolar deficiencies.118

In vivo application of PDGF alone or in combination with IGF induces mineralized tissue repair.16 PDGF also has been shown to have a significant regenerative impact on periodontal ligament cells as well as osteoblasts.119

Kishore, et al.: Alveolar ridge augmentation

Kishore, et al.: Alveolar ridge augmentation
Bone morphogenetic proteins (BMP) are a group of regulatory glycoproteins that are members of the TGFβ superfamily. Investigations in animal models have shown the potential repair of alveolar bony defects using rhBMP 12. In a clinical trial, rhBMP 2 delivered by a bioresorbable collagen sponge revealed significant bone formation in a human buccal wall defect model following tooth extraction when compared to the collagen sponge alone. Also BMP 7, stimulates bone regeneration around teeth and endosseous dental implants, and in maxillary sinus floor augmentation procedures.

OSSEOENDESSICATION – a new technique for ridge expansion and enhanced implant stability

Standard drill designs used in dental implantology are made to excavate bone to create room for implant placement. They cut away bone effectively but typically do not produce a precise circumferential osteotomy. Moreover, osteotomies drilled into narrow bone locations may produce dehiscence, buccally or lingually, which also reduces primary stability and will require an additional bone grafting procedure adding cost and healing time to treatment. Unlike traditional bone drilling technologies, osseodensification does not excise bone tissue. Also, it preserves bone bulk, so bone tissue is simultaneously compacted and autografted in an outwardly expanding direction to form the osteotomy. It is accomplished by using purposely densifying burs. When the densifying bur is rotated at high speed in a reversed, non-cutting direction with steady pulling force, a hardening or densification of the bone occurs. In this way, a dense compacted layer of bone tissue is formed along the walls and base of the osteotomy.

An in vivo study in sheep model compared conventional drilling method as control and osseodensification method as test group. The results revealed that a significant increase of ridge width and bone volume percentage (%BV) (approximately 30% higher) was detected in the test group. The results revealed that a significant increase of ridge width and bone volume percentage (%BV) (approximately 30% higher) was detected in the test group.

Conclusion

This review has demonstrated that a wide range of surgical procedures can be used to correct deficient edentulous ridges. However, there are not enough data showing a single surgical procedure which offer a better outcome than another, as far as predictability of the augmentation and survival/success rates of implants placed in augmented sites are concerned. Every surgical procedure presents advantages and disadvantages, which must be carefully evaluated before surgery. Ridge splitting techniques are mainly used as alternatives for grafting to avoid morbidity and reduce the graft complications. But these techniques are applicable only if there is enough cancellous bone between the two cortices. Distraction osteogenesis allows for more vertical bone augmentation than other techniques. But patient compliance should be assured throughout the treatment period.

References

Newer periodontal pathogens and their potential role in Periodontitis

Bhavya B, Ashwini S, Vineeta Shaji

ABSTRACT:
Periodontitis, a biofilm-associated inflammatory disease of the periodontium, is a major cause of tooth loss in the world. This disease appears to have multiple etiologies, the most studied of which are microbial and immunological causes. Socransky and Haffajee using checkerboard DNA-DNA hybridization gave us clarity into the key microbial players in dental plaque associated biofilm. However researchers have since then found out many other organisms which seem to play an equally important role in the causation of periodontitis, be it adult periodontitis, aggressive periodontitis or refractory periodontitis. This review aims to highlight those newer periodontal pathogens which have been discovered but haven’t been given due importance as causative factors of periodontitis. Knowledge about these pathogens may be essential in the future to treat periodontitis in a site specific and patient specific way.

Key words: Newer periodontal pathogens, checkerboard DNA-DNA hybridization, oral synergistetes,

INTRODUCTION

Periodontitis is a chronic inflammatory disease of the supporting structures of the periodontium thought to be caused by an interplay of microbial invasion and host immune inflammatory response leading to loss of alveolar bone and eventually tooth loss. From the discovery of microbes on tooth surface by Leunenhook to the dysbiotic theory by Hajishengallis periodontology has taught us that these organisms are not to be ignored but to be taken very seriously as they are the harbinger of disease entity. The establishment of a microorganism as a true pathogen should be based on two main levels of evidence: (1) the organism should be present in higher prevalence and/ or levels in disease than in health (“association” studies), and (2) its suppression or elimination should reduce or stop disease progression.[1]

HISTORY

The microbial etiology of periodontitis had been established since 1976 when the non-specific plaque hypothesis was proposed by Loesch. Socransky[8] and Haffajee brought greater clarity into the oral microbiota when they grouped organisms into coloured complexes by checkerboard DNA-DNA hybridization. In 2001, using cloning and Sanger sequencing, Paster[9] et al suggested a possible role of cultivable and not-yet cultivable/unrecognized microbial species in the etiology of periodontitis, confirming the idea that the diversity of the oral microbiota was more complex than previously known. Several molecular approaches, sequencing techniques, were published in the periodontal literature by Kumar et al; Matarranz et al; Teles et al; Griffen et al and Abusleme et al. Haffajee et al attempted to study the complexes in supragingival plaque adopting cluster analysis and community ordination. The red complex observed in subgingival plaque was strengthened with the addition of Eubacterium-datum and Treponema socranski. Similar additions were observed in orange and yellow complex.[10]

Normally pathogenic organisms like Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans being observed in healthy sites was contrary to specific plaque hypothesis, microbial shift and keystone pathogen hypothesis. The Polymicrobial synergy and dysbiotic[11] theory gives credit to the fact that these organisms can be present even at healthy sites but can elevate the virulence of a community following interactive communication with other pathogens like Streptococcus mitis. All speculations about different micro-organisms in a biofilm still remain as more microbes get discovered and their interactions with other groups of pathogens still remain unexplored. However too much attention to red complex organisms as being primarily responsible for disease has been paid when hitherto undiscovered microbes may be the real culprits. Therefore the aim of this review is to shed light on these newer micro-organisms which have been implicated in periodontitis through various studies and which have clinical relevance as etiological agents of periodontitis.

NEW ADDITIONS IN DIFFERENT COMPLEXES:[8] TREPONEMA SOCRANSKI
A new species, Treponema socranski, and three new subspecies, T. socranski subsp. socranski, T. socranski subsp. buccale, and T. socranski subsp. paredis, were isolated from supra gingival and sub gingival samples from patients

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Porphyromonas gingivalis</td>
<td>Filifactora locis</td>
</tr>
<tr>
<td>Tannerella forsythia</td>
<td>Dialister pneumosintes</td>
</tr>
<tr>
<td>Aggregatibacter actinomycetemcomitans</td>
<td>Fretibacterium fastidiosum</td>
</tr>
<tr>
<td>Prevotella intermedia</td>
<td>Joquettella anthropi</td>
</tr>
<tr>
<td>Prevotella melaninogena</td>
<td>Pyramido bacterpicolens</td>
</tr>
<tr>
<td>Fusobacterium nucleatum</td>
<td>Solobacterium moorei</td>
</tr>
<tr>
<td>Eikenella corrudens</td>
<td>Treponema lecinthinlyticum</td>
</tr>
<tr>
<td>Prevotella nigrescens</td>
<td>Parvimonas micra</td>
</tr>
<tr>
<td>Capnocytophaga gingivalis</td>
<td>Methanobrevi bacteroralis</td>
</tr>
<tr>
<td>Treponema denticola</td>
<td>Bulleidiaexigua, Stakiaexigua</td>
</tr>
<tr>
<td>Treponema socranski</td>
<td>Porphyromonas endodontalis</td>
</tr>
<tr>
<td>Eubacterium nodatum</td>
<td>Prevotella histicola</td>
</tr>
<tr>
<td>Campylobacter rectus</td>
<td>Cryptobacterium curtum</td>
</tr>
</tbody>
</table>

Conflict of Interest: None declared

Address for Correspondence: Bhavya B, Department of periodontics, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, M.S.R. Nagar, Bangalore – 54, Karnataka, India. E-mail: bhavasyetty123@gmail.com

Date of Submission: 4-07-2016
Date of acceptance: 12-08-2016
with periodontitis and from patients with experimental gingivitis by Smibert et al. These organisms ferment carbohydrates and require rumen fluid or fatty acids for growth. The major products of fermentation are acetic, lactic, and succinic acids.17

T. socranskii, T. denticola, and P. gingivalis are associated with the severity of periodontal tissue destruction.18 Later Halfpenny et al. found this organism in periodontitis patients along with P. gingivalis and T. denticola and suggested addition of this organism into the red complex.19 According to a systematic review by Rakic et al. on the microbiological profile of peri-implantitis, T. socranskii is a prominent member of peri-implant microbiota.20

FILII FACTOR ALOCIS (filum, thread; factor, a maker; Filifactor, thread-maker. alo- -okos, a furrow; alocis, of a furrow, referring to its isolation from a crevice of the gum)21

It is a fastidious, gram-positive, obligate anaerobic rod possessing tropin-like enzymatic activity similar to P. gingivalis and T. denticola. This organism has been found in elevated numbers in aggressive periodontitis (77.8%) and chronic periodontitis (76.7%) compared with periodontally healthy individuals due to its potential to withstand oxidative stress and inflammatory microenvironment provided by periodontal pocket.22 Filifactors attributed as the second most prevalent in chronic periodontitis and third most prevalent in generalized aggressive periodontitis and proposed to be an excellent marker organism for periodontal disease.23

Actinomyces israelii

Cytommelesovirus presence is associated with the presence of this organism.24,25 D. pneumosintes was detected in 83% of patients having severe periodontitis and in 19% of patients having slight periodontitis. Hence it was suggested to add D. pneumosintes to the group of suspected periodontal pathogens.26

DIALISTER PNEUMOSINTES

These are small, gram-negative rod that grows with pinpoint, convex, transparent, shiny, smooth colonies on blood agar.27 D. pneumosintes is a frequent isolate from the oral cavity and has been implicated in periodontitis; closely associated with Tannerella forsythia. With refinements in molecular microbiology especially 16S rRNA (rRNA) polymerase chain reaction (PCR) identification method, Ghayoumi et al. determined the presence of D. pneumosintes from periodontal pockets and implicated it as “candidate pathogen.”28

D. pneumosintes may provide growth facots for T. forsythia or vice versa. D. pneumosintes was detected in 83% of patients having severe periodontitis and in 19% of patients having slight periodontitis. Hence it was suggested to add D. pneumosintes to the group of suspected periodontal pathogens.28

Porphyromonas endodontalis

These include Fusobacterium fastidiosum, Jonquella antropicra, Pyrampio bacteriospilotes.29 Al-Hebshi et al.29,30 in an explored associations among classical and new putative pathogens in subgingival biofilm and assessed their relative importance in chronic periodontitis. The log counts of oral Synergistetes were the best marker of periodontitis followed by these of T. forsythia, P. micros and T. denticola. Oral Synergistetes are divided into clusters A and B by Vartoukian et al.31 A includes species of the new genus Frebitbacterium, including F. fastidiosum (Downes J), while cluster B include J. antropicra and P. piscicola. Oral Synergistetes are presented as new members of the red complex, with relative importance to periodontitis exceeding that of the classical members.

SOLOBACTERIUM MOOREI

Named in honor of an American microbiologist Moorei22 it is a gram-positive, non-spor-forming, anaerobic bacillus originally isolated from human feces. In the last decade, S. moorei has been associated with halitosis and subgingival plaque from patients with refractory periodontitis. Kazor et al. found S. moorei in three of six subjects with halitosis and in one of five normal subjects. Harashy et al. using PCR identified S. moorei on the dorsal surface of the tongue in eight of eight subjects with halitosis but in zero of five normal subjects. S. moorei strains produce volatile sulfur compounds through a process involving the galactosidase activity of the bacterium and an exogenous source of proteases.33 S. moorei is susceptible to the antimicrobial agents’ tea tree oil and alpha-bisabolol, suggesting that these compounds might be beneficial in oral healthcare products.33

Bideliovirobacter bacteriovorus

Bdeliovirobacter BALO (small) (0.25× 1.0 µm), flagellate gram-negative organisms. They are obligatory predators. They invade and kill other gram-negative bacteria. Van Esche et al.34 were the first to evaluate the potential use of B. bacteriovorus for combating A. actinomycetemcomitans in oral infections. Slieper reported that Bdeliovirirobacter was able to attack A. actinomycetemcomitans biofilms successfully. B. bacteriovorus has an ability in vitro to remove biofilms as well as to detach metabolically inactive biofilms.35

Bdeliovirirobacter, Bacteriovorax (called ‘BALO’s’- Bdeliovirirobacter and like organisms) bacterial predation was a possible approach to combat periodontal pathogens was investigated by Van Esche et al.36 Almost all periodonal pathogens are gram-negative and potentially susceptible to BALO predation. Identifying oral microorganisms as gram-positive and therefore resistant to BALO predation. Their use as an antibiotic remove harmful and pathogenic bacteria and as probiotic help curb and control the bacterial populations within the intestinal tract. Hence the term “antibiotic” was coined by MohammedDwivedi et al.28 for this kind of bacteria. Dashti et al.27 demonstrated that by coculturing B. bacteriovorus 109D and M. aeruginosavorus ARL-13 with selected pathogens, predatory bacteria are able to attack bacteria from various geni.

Significance and Impact of these organisms: Infectious complications caused by micro-organisms that have become resistant to drug therapy are an increasing problem in medicine, with more infections becoming difficult to treat using traditional antimicrobial agents. The work presented here highlights the potential use of predatory bacteria as a biological-based agent for eradicating multidrug-resistant bacteria.

Porphromonas endodontalis

P. endodontalis is an asaccharolytic, black-pigmented, gram-negative anaerobic bacterium which is highly sensitive to oxygen and is therefore difficult to cultivate from clinical samples. P. endodontalis has been isolated from endo-perio lesions as well as from periodontitis patients. Tran et al. first reported the detection of this species in periodontal pockets. Lombardo et al.37 showed a high prevalence of P. endodontalis in addition to P. gingivalis and T. forsythia, in diseased periodontal sites when compared to healthy sites, with a statistically significant reduction after periodontal therapy. P. endodontalis was significantly correlated with the presence of T. forsythia and P. gingivalis in the diseased group.

Treponeumatah Lithomycetica

Treponema leptinoliticum is a recently described oral treponeme that exhibits strong phospholipase activity and is present at high frequency in the subgingival plaque samples of aggressive periodontitis patients. In a study by Wyss et al., Treponema pallidum sp. nov., a small, glucolactic or glucaric acid-dependent oral spirochete from lesions of human periodontitis and acute necrotizing ulcerative gingivitis (ANUG) was identified. Small oral spirochaetes with a strict dependence on either glucaric acid or glucaric acid were isolated from European patients with periodontitis and from Chinese patients with either glucaric acid or glucaric acid were isolated from European patients with periodontitis and from Chinese patients with glucaric acid or glucaric acid. Archaea (Methanogens) present distinct features from bacteria and eukaryotes. The diversity of archaea is limited in a few phylotypes, constituted in particular by methane-producing archael organisms. Although they are possibly symbionts, methanogens may play a role in the establishment of mucosal diseases by favouring the growth of certain bacterial groups. Archaea were harbored by 36% of periodontitis patients and were restricted to subgingival sites with periodontal disease.38 Probing depth was decreased at treated sites in association with clinical improvement. Methanobrevibacter oralis were frequently found in subjects with periodontal health and generalized aggressive periodontitis, especially the levels were found to be more in generalized aggressive periodontitis. Matarazzo et al.39 reported these organisms as an environmental modifier in generalized aggressive periodontitis.

Other Putative Periodontal Pathogens

Booth et al.40 designed oligonucleotide probes for Bullieda extracta, Eubacterium nodatum, Mogibacterium timidum and Slackia exigua and extracted them from the samples with a
PATHOGENS

Atopobium rimae

more prevalent in periodontal health included two un

cultivated clones D084 and BH017 from the

Newer species implicated in the causation of periodontitis are

amounts of acetic acid, succinic acid, lactic acid are produced

presence of metronidazole and other strains form bull's-eye

melaninogenica

the strains constituted a novel group within the genus

PREVOTELLA HISTICOLA

pocket of an adult patient and necrotic dental pulp and named it

periodontitis, inflammation and abscess. Nakazawa

isolated novel

Eubacterium-

Deferribacter-

Kryptos-

et al.

Treponema socranskii, subsp. paredis subsp. nov. Isolated

Treponema socranskii subsp. buccale subsp. nov., and

Rannev. “Treponema socranskii sp. nov.,

REFERENCES

13. Contreras, Adolfo, Javier Enrique Botero, and Jørgen Schlæf.

cheluminescent detection method. The levels of both E.

nodatum and S. exigua was significantly higher in deep than

shallow pockets. The level of E. nodatum, but not S. exigua,

was higher in patients than matched controls. Both E. nodatum

and S. exigua were associated with clinical indicators of

periodontal disease.

CRYPTOBACTERIUM CURTUM(Kryptos- hidden; curtus- shortened; a hidden rod-shaped bacterium)

Cells are short gram-positive rods, occasionally gram-variable.

They are obligate anaerobe, non-motile and non-spore

genulate negative and asaccharolytic. Individual cells occur

singly or in masses. C. curtum is characterized as an

opportunist pathogen with a typical occurrence in the oral

cavity, involved in dental and oral infections such as

periodontitis, inflammation and abscess. Nakazawa et al.

isolated novel Eubacterium-like isolates, from the periodontal

pocket of a dient patient and necrotic dental pulp and named it

C. curtum.

PREVOTELLA HISTICOLA(bistus; tissue; cola,

inhabitant, histica inhabitant of tissue)

They are gram-negative nonmotile bacilli that are obligatory

inhabitant, histicola inhabitant of tissue)

This is the author’s view that our current knowledge about

pathogens in the dental plaque biofilm will help us to tailor-

make a treatment plan for every patient. Most of our current

treatment modalities still depend on the old non-specific plaque

hypothesis. By investigating the susceptibility of periopathogens to mechanical therapy, prophylaxis, surgical intervention or any other therapy we will be able to

treat and control the epidemic of periodontitis without depending

wholly on chemotherapeutic agents. In order to make progress of such an idea, advances have to be made in targeting individual organisms rather than the community as a

whole. This will lead to major disruption of the biofilm colony

formation (cutting off their major nutrient supply) and collapse

the biofilm thereby giving us huge leeway into treating

periodontitis. This translates in the form of reduction of

probing pocket depth or clinical attachment gain. This will also

help researchers find out exactly how much host responses

pave the way to progression of periodontitis.

CONCLUSION

The etiologic role of newer microorganisms would need to be

confirmed by risk assessment and interventional studies to

evaluate whether their reduction or elimination would be

accompanied by clinical improvements or whether their

persistance would lead to disease progression. In addition,

further investigation into their mechanisms of pathogenicity

designed their ability to promote or evade host immune response

would be required. Let us hope that future researches into this

new world of microbial periodontics help us to treat the global

epidemic of periodontitis in a better fashion.

190

Bhavya, et al.: Newer periodontal pathogens

191
Comparative evaluation of the effect of diode LASER and arginine containing desensitizing agent: An in vitro SEM pilot study

Arun Narayanan, Ajay Bhat, Shabeer Ali K

ABSTRACT:
Purpose: The aim of this study was to evaluate the effect of diode LASER and arginine containing desensitizing agent on coronal dentin as measured by dentinal occlusion assessed by SEM analysis.

Materials and methods: 10 sound teeth extracted for orthodontic purpose from the patients of age group 15 to 30 years. Specimens were divided into two groups each with 5 teeth specimen. Group 1 Specimens were desensitized for 3 minutes by diode LASER and group 2 specimens were brushed with arginine containing desensitizing agent for twice in a day. The dentinal tubule occlusions of two group specimens were analyzed by scanning electron microscope.

Results: The LASER treated teeth samples shows average result of 29% occluded dentinal tubules and the teeth samples which were treated with Arginine desensitizing agent gave a result of an average 22% occluded dentinal tubules.

Conclusion: The pilot study results shows immediate positive effect by LASER technique than the desensitizing agent used in our study. Thus we require a larger sample size to prove the same.

Key words: Dentin hypersensitivity, diode LASER, desensitizing agent, scanning electron microscope, dentinal tubule occlusion.

INTRODUCTION:
Dentin hypersensitivity (DH) or cervical dentin sensitivity may be defined as pain arising from the exposed dentin, typically in response to a chemical, thermal, tactile, or osmotic stimulus that cannot be explained as arising from any other form of dental defect or pathology. The prevalence of this disorder has been reported in different studies to vary from 4.73% to 40%.

The exposure of dentin and its sensitivity may occur via one or both of two processes: removal of enamel, or denudation of the root surface due to loss of the overlying cementum and periodontal tissues.

Address for Correspondence: Shabeer ali K P, Department of Periodontology, Kannur dental college, Kannur, Karala, India

INTRODUCTION:
Dentin Hypersensitivity (DH) or cervical dentin sensitivity may be defined as pain arising from the exposed dentin, typically in response to a chemical, thermal, tactile, or osmotic stimulus that cannot be explained as arising from any other form of dental defect or pathology. The prevalence of this disorder has been reported in different studies to vary from 4.73% to 40%.

The exposure of dentin and its sensitivity may occur via one or both of two processes: removal of enamel, or denudation of the root surface due to loss of the overlying cementum and periodontal tissues.
Dentine hypersensitivity can be a potential threat to the individual’s oral health because such pain may interfere with the maintenance of good oral hygiene. However it still remains a poorly understood area and consequently there appears to be no permanent treatment for this clinical condition. As per the various hypotheses of dentin hypersensitivity, hydrodynamic theory is the most commonly accepted established theory.4-5 In accordance with this theory, dentine hypersensitivity might be reduced physiologically by formation of intratubular crystals from the dentinal fluids and saliva minerals or by the application of therapeutic chemical agent to occlude the exposed dentinal tubules.6-8

Most of these chemical compounds reduce dentinal hypersensitivity either by crystallizing inside the dentinal tubules or by forming a precipitate at the entrance of the tubule, thereby decreasing the dentinal tubular flow.9 Various chemical compounds have been used for the occlusion of open dentin tubules such as, Silver nitrate, formalin, Glycerine, Strontium chloride, Dicalcium phosphate, Potassium nitrate, Sodium fluoride, Sodium citrate, Calcium hydroxide, Resins, Potassium oxalate, Stannous fluoride, Cynacrylate and ferric oxalate.9

A new technology has come in treatment of dentinal hypersensitivity which shows effective relieve by physically plug and seal to the exposed dentin tubules called Pro/Argin. Its components are arginine, an amino acid which is positively charged at physiological pH (6.5-7.5), bicarbonate, a pH buffer, and calcium carbonate.9

The use of LASERS opens a new dimension in the treatment of dentin hypersensitivity. LASER mediated treatment of exposed dentine has been used to address the patency of tubular openings, causing closure of tube openings to a depth of several microns, or to coagulate the tubular contents. Energy levels when using hard LASERs must be sufficiently low to avoid pulpal damage (shorter wavelengths), or hard tissue ablation (longer wavelengths). The most commonly explored LASERs are the low-level diode (He-Ne 633 nm, GaAlAs 810 nm) group and moderate powered diode and Nd:YAG LASER wavelengths. The effectiveness of the low-level group (Diode LASER) is thought to be through biostimulatory effect and the higher powered LASERs through heat-welding of tubule openings.10-14

There are limited studies in the literature showing the effective management of dentinal hypersensitivity using diode LASERs and arginine desensitizing agent, therefore present study was conducted to evaluate and compare the efficacy of diode LASER and arginine desensitizing agent under scanning electron microscope to visualize the extent of the occlusion of dentinal tubules.

MATERIALS AND METHODS

Sample source
Specimens were obtained from 10 sound premolars extracted for orthodontic purpose from the patients of age group 15 to 30 years. All the teeth were stored in 10% formalin at room temperature. Severely attrited, decayed premolar or premolars with cervical abrasion are excluded from the study.

Dentine specimen preparation
The cervical 1/3rd of each premolar were prepared by using double-sided diamond disk attached to straight handpiece and the smear layer removed from specimens by treating with EDTA and Sodium hypochlorite. After preparation these dentin blocks were mounted on polyvinyl plastic plate using Cynacrylate adhesive (super glue).

Sampling method:
Specimens were randomly divided into two groups each with 5 teeth specimen.

Group-1: Specimens were desensitized by diode LASER for 3 minutes (1.5 w - 100mj-with 10 s interval) using DentLase Diode LASER.

Group-2: Specimens were brushed with desensitizing tooth paste (Colgate sensitive prorelief) for twice in a day.

The two groups are sectioned and analyzed for tubule occlusion under SEM.

SEM analysis
After the procedure the dentine specimens were coated with a thin layer of gold/sputter and photomicrographs were taken using Scanning Electron Microscope at 3000X magnification

Statistical analysis
Percentage of occluded tubules was obtained by dividing the total number of occluded tubules by total number of tubules in each photomicrograph. This result was then multiplied by 100 to obtain the percentage of occluded tubules for each photomicrograph. The data was tabulated and results are statistically analyzed by chi square test.

RESULTS
The group 1 specimens (LASER treated teeth samples) presented an average result of 28.6% (Table 1) occluded dentinal tubules and group 2 specimens which treated with Arginine tooth paste presented with an average of 22% occluded dentinal tubules (Table 2).

When the percentage of tubule occlusion in group 1 and 2 are compared, there was a significant difference between both the groups. Group 1 specimen showed the most occluded dentinal tubules.

On the basis of chi-square test there is a significant difference of scores between group 1 and 2 (p value <0.05). Comparison of dentinal tubule occlusion ability within diode LASER and arginine desensitizing agent data was statistically significant.

DISCUSSION
This study was performed to compare the efficacy of diode LASER and arginine desensitizing agent by comparing dentin tubule occlusion by scanning electron microscope. Our study shows significant dentinal tubule occlusion by the LASER treated samples compared to arginine desensitizing agent treated samples. In photomicrographs the more fully occluded tubules and cracks are observed in LASER treated samples compared with the arginine desensitizing agent treated specimens.

Gautham Kumar (2005) conducted a short term assessment of the Nd:YAG LASER with and without sodium fluoride varnish in the treatment of dentin hypersensitivity on 40 patients. The study results showed that the combination of Nd:YAG LASER and 5% sodium fluoride varnish seems to have an impressive efficacy, when compared to either treatment alone, in treating dentin hypersensitivity. The SEM findings seem to relate to the clinical findings since that reduction in number/patency of tubules were associated with improvement in treatment efficacy.15

Study by Romeo Umberto et al (2012) using GaAlAs diode LASER alone and with topical sodium fluoride gel (NaF) reported that diode LASER is useful device for dentin hypersensitivity when used alone and used with NaF gel. High resolution scanning electron microscopy (SEM) images have verified that the arginine-calcium carbonate desensitizing paste provides complete occlusion of open dentin tubules, and freeze-fracture images have demonstrated that the plug reaches a depth of two microns into the tubule.16

The study by D Cummins reported that significant reductions in dentin hypersensitivity immediately after single application of arginine desensitizing agent.17 The clinical efficacy of arginine desensitizing agent is reported by various other studies by F Ayad et al, T Schift et al, Samuel SR. et al.18-19

The results of our study using SEM analysis, in LASER treated samples ,sample 1 shows average of 25.8 % occluded tubules, sample 2 - 29.62%, sample 3 - 31.25%, sample 4 - 27.77 %, sample 5 - 28.57% with a total average of 28.60 % closed tubules and 71.4 % open tubules .Whereas the specimens treated with arginine desensitizing agent showed an average occluded tubules in sample 1 are 23.33%, sample 2- 20%, sample 3-21.42%, sample 4 - 25%, sample 5 -21.81% with a total average of 22.31% occluded tubules and rest are opened tubules (77.69%). The result of our study shows need of multiple application of diode LASER and arginine desensitizing agent to reduce the percentage of open tubules.

CONCLUSION
LASER treated teeth samples shows more percentage of occluded dentinal tubules than the teeth samples treated with arginine desensitizing agent. The results of our study gave positive approach towards the immediate treatment procedure for dentin hypersensitivity by using diode LASER procedure shows significant decrease of dentin hypersensitivity when compared to arginine desensitizing agent. The opened tubules...
in the both samples shows the need of further study about multiple application and long duration of application of LASER and desensitizing agent by using large sample size.

REFERENCES

assessing the similarity in the mineral composition of dental calculus and saliva.

AIM:
To know the similarity in the mineral composition of dental calculus and saliva.

OBJECTIVES:
- To identify and quantitate the mineral content of dental calculus
- To compare the mineral contents of dental calculus and saliva.

MATERIALS:
1. Materials to collect, transport and store calculus
2. Chemicals needed for the analysis: Distilled water, 0.02N HCl, 25% methyl orange solution, ammonium molybdate, concentrated H2SO4, stannous chloride, glycerol, anhydrite potassium phosphate, polypropylene bottles, volumetric flasks, polypropylene pipettes.
3. Apparatus: Spectrophotometer for use at 690 nm.

PROCEDURE:
Stock Solution: Prepare 1 ppm stock solution by pipetting 1 ml Anhydrous potassium di hydrogen orthophosphate and diluted to 1000 ml. 1 ml = 50µg PO4-P.

Standard phosphate solution: Dissolve 219.5 mg anhydrous potassium di hydrogen orthophosphate and dilute to 100ml. 1 ml = 50µg PO4-P.

Prepare a blank in which 35 ml distilled water is substituted for the sample. After 10 min or more measure absorbance of sample versus a blank at a wavelength of 410 nm.

Calculation: Mg P/L = Concentration in mg/l (directly from calibration graph)

RESULTS:

<table>
<thead>
<tr>
<th>SI No</th>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Calcium</td>
<td>5080.64mg/kg</td>
</tr>
<tr>
<td>2.</td>
<td>Magnesium</td>
<td>5096.60mg/kg</td>
</tr>
<tr>
<td>3.</td>
<td>Sodium</td>
<td>140.22mg/kg</td>
</tr>
<tr>
<td>4.</td>
<td>Zinc</td>
<td>UV spectrometer Analysis</td>
</tr>
<tr>
<td>5.</td>
<td>Phosphates</td>
<td>413.64mg/kg</td>
</tr>
<tr>
<td>6.</td>
<td>Carbonates</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Ammonium Molydate in 175ml distilled water. Cautiously add 280ml conc. H2SO4 to 400 ml dist. water. Cool, add molybdate solution, and dilute to 1 litre.

Standard phosphate solution: Dissolve in distilled water 219.5 mg anhydrous K2HPO4 and diluted to 1000ml. 1 ml = 50µg PO4-P.

Calculation:

CONCLUSION:
The composition of calculus is highly influenced by the nature of saliva. The mineral content of calculus of different individuals are explained by the differences in the nature of saliva. The present study assessed the mineral composition of calculus and found it to be similar to the chemical composition of saliva. This study confirms the earlier hypothesis of calculus formation which supports the mineralization of plaque by saliva owing to its similarity in chemical composition.

REFERENCES:
4. IS 3025-23 (1986): Methods of sampling and test (physical and chemical) for water and wastewater. Part 23: Alkalinity. [ChD 32: Environmental Protection and Waste Management]

DISCUSSION:
A chemical analysis of the dental calculus was done with an objective to know the mineral content & compare it with that of saliva. By the analysis with UV visible spectrometer & spectrophotometer (ICP-MS), the dental calculus was observed to contain mainly Calcium, Magnesium, Phosphorus & trace amounts of Sodium and Zinc. Carbohydrates which included in the main component of dental calculus which is not detected in this sample. Other elements which are in trace amounts are also not detected. The minerals found in calculus in the present study was similar to the content of saliva.

METHODOLOGY:
The dental calculus for inorganic content assessment was collected from the lower anterior lingual side of teeth region. The calculus sample collected with sickle scaler digestion it was quantitatively transferred in to 50 ml tube and stored in sterile plastic bottle for chemical analysis. The calculus and saliva.

PROCEDURE:
Sample pH adjustment: If sample pH >10, add 1 drop of phenolphthalein indicator to 50 ml sample and discharge the red colour with (1:1) HCl before diluting to 100 ml.

Colour development in the sample: To 100 ml sample add 4 ml molybdate reagent and 0.5 ml stannous chloride reagent. After 10 minute but before 12 minute measure the intensity of blue colour complex was measured at 690 nm.

Calculation:

\[\text{Total alkalinity (as CaCO}_3/\text{L}) = \text{Titre value} \times 1000 \times \text{N x 50/sample volume} \]

\[\text{Heavy metal analysis:} \]

Principle: Sample is introduced into the instrument using a peristaltic pump, into a nebulizer. The nebulizer nebulizes the sample into small droplets and passes it into argon based high temperature plasma. Energy transfer from the plasma to the sample stream causes desolvation, atomization, and ionization of target analytes. Ions generated by this energy transfer processes are extracted from the plasma through a differential vacuum interface, and separated on the basis of their mass-to-charge ratio by mass spectrometer. The ions passing through the mass spectrometer are counted by an electron multiplier detector.

Reagents:
- Suprapure Nitric acid, or Sub boiled nitric acid
- NIST traceable Calibration standards
- Polypropylene bottles for storing standards
- Polypropylene volumetric flasks for preparing standards
- Polypropylene pipettes
- Inductively coupled plasma mass spectrometer

CONCLUSION:
The composition of calculus is highly influenced by the nature of saliva. The mineral content of calculus of different individuals are explained by the differences in the nature of saliva. The present study assessed the mineral composition of calculus and found it to be similar to the chemical composition of saliva. This study confirms the earlier hypothesis of calculus formation which supports the mineralization of plaque by saliva owing to its similarity in chemical composition.
INSTRUCTIONS TO AUTHORS SUBMITTING ARTICLES IN JCOPS

The Journal publishes original contributions of high scientific merit in every aspect of dentistry and related sciences, with special affinity to the subject of periodontology under the broad categories of reviews, original researches, case reports, case series with discussions, short communications & basic science short research reports (brief report of short research projects in 1-2 journal pages).

Preparation of Manuscripts

Manuscripts must be prepared in accordance with "Uniform requirements for Manuscripts submitted to Biomedical Journals" developed by the International Committee of Medical Journal Editors (October 2006). It is the responsibility of authors/ contributors to obtain permissions for reproducing any copyrighted material. A copy of the permission obtained must accompany the manuscript. Copies of any and all published articles or other manuscripts in preparation or submitted elsewhere that are related to the manuscript must also accompany the manuscript. The material should be sent to the address of Editor in Chief of the journal.

Original Research Articles: The text of original articles amounting to up to 3000 words (excluding Abstract, References and Tables) should be divided into sections with the headings Abstract, Key-words, Introduction, Materials and Methods, Results, Discussion, References, Tables and Figure legends. When reporting studies on human beings, indicate whether the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975, as revised in 2000 (available at http://www.wma.net/e/policy/17-c_e.html). For prospective studies involving human participants, authors are expected to mention about approval of regional/ national/ institutional or independent Ethics Committee or Review Board.

Review Articles: It is expected that these articles would be written by individuals who have done substantial work on the subject or are considered experts in the field. The prescribed word count is up to 3500 words (excluding Abstract, Tables and References). The manuscript may have about 90 references. The manuscript should have an unstructured Abstract (250 words) representing an accurate summary of the article with 3-5 key words. The journal expects the contributors to give post-publication updates on the subject of review.

Case Reports: New, interesting and rare cases can be reported. The manuscript could be up to 1500 words (excluding references and abstract) and could be supported by 10-20 references. Case Reports could be authored by up to four authors.

Short Communications: Short communications are suitable for the presentation of interesting, well-documented, practice-based clinical cases aimed at providing the diagnostic or therapeutic knowledge and/or imparting the requisite clinical skills to the general practitioners and other specialists. New and rare cases with clinical significance or implications will be given priority. These communications should be up to 800 words (excluding Abstract and references) and should have the following headings: Abstract (unstructured), Key-words, Introduction, and Communication Report (may or may not have Discussion Section), References, Tables and Legends in that order. The manuscript should be strictly restricted to 800 words (excluding references and abstract) and should be supported by less than 10 references. Strictly should have two tables and/or figures. Short Communications could be authored by up to three authors.

Basic Science Short Research Reports: It should be research reports of short research projects in the same format of original research articles, but limiting it to 1-2 journal pages.

Tables, Figures and figure legends:

- Maximum 5 figures/tables accepted.
- Attach separately, only high quality figures accepted.
- Photos if any should be in JPEG format with minimum 300dpi resolution.
- References: References should be numbered consecutively in the order in which they are first mentioned in the text (not in alphabetical order). Identify references in text, tables, and legends by Arabic numerals in superscript with square bracket after the punctuation marks. References cited only in tables or figure legends should be numbered in accordance with the sequence established by the first identification in the text of the particular table or figure. Use the style based on the formats used by the NLM in Index Medicus. The titles of journals should be abbreviated according to the style used in Index Medicus. Complete name of the journal for non-indexed journals. Avoid using abstracts as references.

Covering Letter: Should be signed by all contributors, source of funding has to be mentioned and conflicts of interest disclosed.

Authors: Last name and given name provided along with Middle name initials. Provide the full postal address and a valid e-mail address of each author. Clearly indicate Author of Correspondence. Provide the complete postal address and a valid e-mail address of the corresponding author. Numbers of contributors are restricted as per the instructions. Identification not to be revealed in paper except title page (e.g. name of the institute, in Methods, citing previous study as ‘our study’, names on figure labels, name of institute in photograph, etc.)

Presentation and format:

- Double spacing
- Margins 2.5 cm from all four sides
- Page numbers included at bottom
- Title page contains all the desired information
- Running title provided (not more than 50 characters)
- Abstract page contains the full title of the manuscript
- Abstract provided (structured abstract of 250 words for original articles, unstructured abstracts of about 150 words for all other manuscripts excluding letters to the Editor)
- Key words provided (three or more)
- Introduction of 75-100 words
- Headings in title case (not ALL CAPITALS)
- The references cited in the text should be after punctuation marks, in superscript with square bracket.
- References to the Journal's instructions, punctuation marks checked
- Send the article file without ‘Track Changes’
- Contributors’ form: The form should be duly signed, scanned and attached with the manuscript.

INSTRUCTIONS TO AUTHORS SUBMITTING ARTICLES IN JCOPS

INSTRUCTIONS TO AUTHORS SUBMITTING ARTICLES IN JCOPS